python-----因子分析

python-----因子分析

因子分析用Python做的一个典型例子
一、实验目的
采用合适的数据分析方法对下面的题进行解答
在这里插入图片描述
二、实验要求
采用因子分析方法,根据48位应聘者的15项指标得分,选出6名最优秀的应聘者。
三、代码

import pandas as pd
import numpy as np
import math as math
import numpy as np
from numpy import *
from scipy.stats import bartlett
from factor_analyzer import *
import numpy.linalg as nlg
from sklearn.cluster import KMeans
from matplotlib import cm
import matplotlib.pyplot as plt
def main():
    df=pd.read_csv("./data/applicant.csv")
    # print(df)
    df2=df.copy()
    print("\n原始数据:\n",df2)
    del df2['ID']
    # print(df2)
    # 皮尔森相关系数
    df2_corr=df2.corr()
    print("\n相关系数:\n",df2_corr)
    #热力图
    cmap = cm.Blues
    # cmap = cm.hot_r
    fig=plt.figure()
    ax=fig.add_subplot(111)
    map = ax.imshow(df2_corr, interpolation='nearest', cmap=cmap, vmin=0, vmax=1)
    plt.title('correlation coefficient--headmap')
    ax.set_yticks(range(len(df2_corr.columns)))
    ax.set_yticklabels(df2_corr.columns)
    ax.set_xticks(range(len(df2_corr)))
    ax.set_xticklabels(df2_corr.columns)
    plt.colorbar(map)
    plt.show()
    # KMO测度
    def kmo(dataset_corr):
        corr_inv = np.linalg.inv(dataset_corr)
        nrow_inv_corr, ncol_inv_corr = dataset_corr.shape
        A = np.ones((nrow_inv_corr, ncol_inv_corr))
        for i in range(0, nrow_inv_corr, 1):
            for j in range(i, ncol_inv_corr, 1):
                A[i, j] = -(corr_inv[i, j]) / (math.sqrt(corr_inv[i, i] * corr_inv[j, j]))
                A[j, i] = A[i, j]
        dataset_corr = np.asarray(dataset_corr)
        kmo_num = np.sum(np.square(dataset_corr)) - np.sum(np.square(np.diagonal(A)))
        kmo_denom = kmo_num + np.sum(np.square(A)) - np.sum(np.square(np.diagonal(A)))
        kmo_value = kmo_num / kmo_denom
        return kmo_value
    print("\nKMO测度:", kmo(df2_corr))
    # 巴特利特球形检验
    df2_corr1 = df2_corr.values
    print("\n巴特利特球形检验:", bartlett(df2_corr1[0], df2_corr1[1], df2_corr1[2], df2_corr1[3], df2_corr1[4],
                                  df2_corr1[5], df2_corr1[6], df2_corr1[7], df2_corr1[8], df2_corr1[9],
                                  df2_corr1[10], df2_corr1[11], df2_corr1[12], df2_corr1[13], df2_corr1[14]))
    # 求特征值和特征向量
    eig_value, eigvector = nlg.eig(df2_corr)  # 求矩阵R的全部特征值,构成向量
    eig = pd.DataFrame()
    eig['names'] = df2_corr.columns
    eig['eig_value'] = eig_value
    eig.sort_values('eig_value', ascending=False, inplace=True)
    print("\n特征值\n:",eig)
    eig1=pd.DataFrame(eigvector)
    eig1.columns = df2_corr.columns
    eig1.index = df2_corr.columns
    print("\n特征向量\n",eig1)
    # 求公因子个数m,使用前m个特征值的比重大于85%的标准,选出了公共因子是五个
    for m in range(1, 15):
        if eig['eig_value'][:m].sum() / eig['eig_value'].sum() >= 0.85:
            print("\n公因子个数:", m)
            break
    # 因子载荷阵
    A = np.mat(np.zeros((15, 5)))
    i = 0
    j = 0
    while i < 5:
        j = 0
        while j < 15:
            A[j:, i] = sqrt(eig_value[i]) * eigvector[j, i]
            j = j + 1
        i = i + 1
    a = pd.DataFrame(A)
    a.columns = ['factor1', 'factor2', 'factor3', 'factor4', 'factor5']
    a.index = df2_corr.columns
    print("\n因子载荷阵\n", a)
    fa = FactorAnalyzer(n_factors=5)
    fa.loadings_ = a
    # print(fa.loadings_)
    print("\n特殊因子方差:\n", fa.get_communalities())  # 特殊因子方差,因子的方差贡献度 ,反映公共因子对变量的贡献
    var = fa.get_factor_variance()  # 给出贡献率
    print("\n解释的总方差(即贡献率):\n", var)
    # 因子旋转
    rotator = Rotator()
    b = pd.DataFrame(rotator.fit_transform(fa.loadings_))
    b.columns = ['factor1', 'factor2', 'factor3', 'factor4', 'factor5']
    b.index = df2_corr.columns
    print("\n因子旋转:\n", b)
    # 因子得分
    X1 = np.mat(df2_corr)
    X1 = nlg.inv(X1)
    b = np.mat(b)
    factor_score = np.dot(X1, b)
    factor_score = pd.DataFrame(factor_score)
    factor_score.columns = ['factor1', 'factor2', 'factor3', 'factor4', 'factor5']
    factor_score.index = df2_corr.columns
    print("\n因子得分:\n", factor_score)
    fa_t_score = np.dot(np.mat(df2), np.mat(factor_score))
    print("\n应试者的五个因子得分:\n",pd.DataFrame(fa_t_score))
    # 综合得分
    wei = [[0.50092], [0.137087], [0.097055], [0.079860], [0.049277]]
    fa_t_score = np.dot(fa_t_score, wei) / 0.864198
    fa_t_score = pd.DataFrame(fa_t_score)
    fa_t_score.columns = ['综合得分']
    fa_t_score.insert(0, 'ID', range(1, 49))
    print("\n综合得分:\n", fa_t_score)
    print("\n综合得分:\n", fa_t_score.sort_values(by='综合得分', ascending=False).head(6))
    plt.figure()
    ax1=plt.subplot(111)
    X=fa_t_score['ID']
    Y=fa_t_score['综合得分']
    plt.bar(X,Y,color="#87CEFA")
    # plt.bar(X, Y, color="red")
    plt.title('result00')
    ax1.set_xticks(range(len(fa_t_score)))
    ax1.set_xticklabels(fa_t_score.index)
    plt.show()
    fa_t_score1=pd.DataFrame()
    fa_t_score1=fa_t_score.sort_values(by='综合得分',ascending=False).head()
    ax2 = plt.subplot(111)
    X1 = fa_t_score1['ID']
    Y1 = fa_t_score1['综合得分']
    plt.bar(X1, Y1, color="#87CEFA")
    # plt.bar(X1, Y1, color='red')
    plt.title('result01')
    plt.show()
if __name__ == '__main__':
    main()

四、实验步骤
(1)引入数据,数据标准化
在这里插入图片描述
因为数据是面试中的得分,量纲相同,并且数据的分布无异常值,所以数据可以不进行标准化。
(2)建立相关系数矩阵
计算皮尔森相关系数,从热图中可以明显看出变量间存在的相关性。
在这里插入图片描述在这里插入图片描述
进行相关系数矩阵检验——KMO测度和巴特利特球体检验:
KMO值:0.9以上非常好;0.8以上好;0.7一般;0.6差;0.5很差;0.5以下不能接受;巴特利球形检验的值范围在0-1,越接近1,使用因子分析效果越好。
在这里插入图片描述
通过观察上面的计算结果,可以知道,KMO值为0.783775605643526,在较好的范围内,并且巴特利球形检验的值接近1,所有可以使用因子分析。
(3)求解特征值及相应特征向量
在这里插入图片描述
在这里插入图片描述
求公因子个数m,使用前m个特征值的比重大于85%的标准,选出了公共因子是五个。
(4)因子载荷阵
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
由上可以看出,选择5个公共因子,从方差贡献率可以看出,其中第一个公因子解释了总体方差的50.092%,四个公共因子的方差贡献率为86.42%,可以较好的解释总体方差。
(5)因子旋转
在这里插入图片描述
(6)因子得分
在这里插入图片描述
在这里插入图片描述
(7)根据应聘者的五个因子得分,按照贡献率进行加权,得到最终各应试者的综合得分,然后选出前六个得分最高的应聘者。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
所以我们用因子分析产生的前六名分别是:40,39,22,2,10,23

  • 10
    点赞
  • 117
    收藏
    觉得还不错? 一键收藏
  • 13
    评论
Python的Fama-French三因子模型是一种用于资产定价的统计模型,通过分析影响资产收益率变动的因素,帮助投资者解释股票回报的来源。 Fama-French三因子模型的主要因子包括市场因子、规模因子和价值因子。市场因子表示市场收益率的变动对股票回报的影响。规模因子是指公司市值的大小对股票回报的影响,较小规模的公司通常具有较高的回报。价值因子表明公司股票的价值相对于其基本面指标的水平,价格较低的公司往往有更高的回报。 在Python中,可以使用pandas和numpy等库来处理数据和进行统计分析。首先,需要从数据库或财经网站上获取相关股票的历史收益率数据和市值数据。然后,使用pandas将数据导入Python,并进行数据清理和预处理。 接下来,利用线性回归模型,使用statsmodels库来拟合三因子模型。将股票的收益率作为因变量,市场因子、规模因子和价值因子作为自变量。运用OLS方法拟合模型,得出各因子的回归系数和截距项。 最后,通过分析回归系数和截距项的显著性,可以判断各因子对股票回报的影响程度。如果回归系数显著不为零,说明该因子对股票回报有显著影响。通过调整各因子的权重,可以对股票组合进行定价和优化,帮助投资者选择合适的投资策略。 总之,Python提供了丰富的数据处理和统计分析工具,可以方便地应用Fama-French三因子模型进行资产定价和投资决策。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值