Animals-10 数据集下载,十种动物

kaggle上的一个数据集

十种动物

狗,猫,马,大象,蝴蝶,鸡,牛,羊,蜘蛛,松鼠

每个种类一两千图片,

也有四五千的。

格式.jpeg

 

 

官方下载地址:https://www.kaggle.com/alessiocorrado99/animals10

自己下的:

链接:https://pan.baidu.com/s/1-F4LmYYJ5P2yxwFEJ8hAOA 提取码:0gl3

 

 

 

 

数据集介绍:31种动物目标检测数据集 一、基础信息 数据集名称:31种动物目标检测数据集 图片数量: - 训练集:16,044张图片 - 验证集:1,535张图片 - 测试集:768张图片 总计:18,347张涵盖多场景的动物图像 分类类别: Bear(熊)、Brown-bear(棕熊)、Cattle(牛)、Cheetah(猎豹)、Lion(狮子)、Tiger(老虎)、Zebra(斑马)等31个动物类别,覆盖野生动物、家畜及濒危物种。 标注格式: YOLO格式,包含标准化边界框坐标及类别索引,支持主流目标检测框架直接调用。 数据特性: 包含地面视角、可能含航拍视角的多样化场景图像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能化管理: 支持牲畜(牛、、马等)自动化监测系统开发,辅助牧场资源管理与动物健康监控。 野生动物保护: 用于构建濒危动物(犀牛、熊猫等)识别系统,支持生态保护区智能监测与盗猎预警。 生态研究应用: 提供多物种共存环境下的动物行为分析数据,助力生物多样性研究与栖息地保护。 智能安防系统: 适用于自然保护区、动物园等场景的入侵动物检测(鳄鱼、豹类等),提升安全防护能力。 三、数据集优势 跨物种覆盖能力: 包含31种差异化动物类别,涵盖陆地常见哺乳动物、珍稀物种及特殊生态位生物,支持模型泛化能力训练。 大规模标注数据: 超1.6万训练样本的丰富数据量,充分满足深度学习模型对数据多样性和规模的要求。 任务适配性: YOLO格式标注兼容主流检测框架,支持快速部署至农业机器人、无人机巡检等实际应用场景。 场景多样性: 数据可能包含不同光照条件、动物姿态及环境复杂度样本,强化模型鲁棒性。 学术与工业价值: 同时覆盖野生动物保护与畜牧管理两大领域,为计算机视觉在生态保护和农业科技中的交叉应用提供核心数据支撑。
多物种动物目标检测数据集 一、基础信息 数据集名称:多物种动物目标检测数据集 图片数量: - 训练集:844张图片 - 测试集:244张图片 - 总计:1,088张高质量图片 分类类别: 覆盖78种动物类别,包括: - 大型哺乳动物(熊、狮子、大象、长颈鹿、犀牛) - 家畜(牛、山、猪、绵- 鸟类(鹰、企鹅、鸵鸟、天鹅) - 水生生物(鲨鱼、海龟、水母、螃蟹) - 爬行与节肢类(鳄鱼、蝎子、蜘蛛、蜈蚣) - 濒危物种(熊猫、红熊猫、北极熊)等 标注格式: YOLO格式标注,包含标准化边界框坐标及类别标签,适用于目标检测任务。 数据特性: 包含航拍、地面视角等多角度动物影像,适配复杂环境下的检测需求。 二、适用场景 1. 野生动物保护监测 构建自然保护区智能监测系统,实时追踪熊、鹿、豹等野生动物活动轨迹。 1. 农业智能化管理 用于畜牧场自动化盘点(牛、)、家禽健康监测(鸡、鸭)等场景。 1. 生态研究数据库建设 支持生物多样性调查、动物迁徙模式分析等科研项目。 1. 智能安防系统开发 检测农场/动物园中的危险动物(鳄鱼、毒蛇)越界行为。 1. 教育辅助工具 作为计算机视觉课程中多类别目标检测的实践数据集。 三、核心优势 物种覆盖全面性 - 同时包含常见家畜、濒危动物及冷门物种(如蜈蚣、刺猬、猞猁) - 涵盖陆地、海洋、空中三大生态领域动物 标注专业度 - 严格遵循YOLO标注规范,边界框紧密贴合动物形态 - 特别处理群体目标(如鱼群、鸟群)的重叠标注场景 跨场景适配能力 - 兼容航拍影像(无人机监测)与地面拍摄(安防摄像头)数据 - 包含昼夜、不同天气条件下的动物活动样本 技术兼容性 - 可直接应用于YOLOv5/v7/v8等主流目标检测框架 - 支持迁移学习至动物行为分析、密度估计等扩展任务
数据集介绍:农牧生态目标检测数据集 一、基础信息 数据集名称:农牧生态目标检测数据集 图片数量: - 训练集:1,999张图片 - 验证集:592张图片 - 测试集:293张图片 分类类别: - Chicken(鸡):常见家禽,用于养殖业生产场景。 - Cow(牛):畜牧养殖核心经济动物- Fox(狐狸):可能威胁畜牧安全的野生动物- Hedgehog(刺猬):自然生态与农田交界区域生物。 - Sheep(绵):典型牧场经济动物- WildBoar(野猪):具有破坏性的农林害兽。 - Wolf(狼):畜牧防护重点监控物种。 标注格式:YOLO格式,包含边界框坐标及类别标签,可直接用于目标检测模型训练。 数据特性:涵盖农场、牧场及野外自然环境场景,包含昼夜不同时段影像。 二、适用场景 智能畜牧监控系统: - 检测牲畜数量与活动状态,实现自动化养殖管理 - 识别狼、狐狸等入侵动物并触发安防预警 生态保护研究: - 监测野生动物种群分布及活动规律 - 分析农场与自然生态交界区域的物种交互 农业保险评估: - 通过野猪等害兽活动检测评估农田受损风险 - 为畜牧资产损失认定提供可视化依据 智能围栏系统: - 实时检测越界动物类型并区分家畜/野生动物 - 联动声光驱赶装置实现精准防护 三、数据集优势 多物种覆盖: - 同时包含7类经济动物生态动物,支持畜牧防护与生态研究的交叉需求 - 标注样本涵盖动物个体/群体、静态/动态多种形态 场景真实性: - 数据来源于真实农场监控与野外采集设备 - 包含复杂背景干扰条件下的有效标注 任务适配性: - 兼容YOLO系列等主流目标检测框架 - 支持畜牧数量统计、入侵检测等多任务扩展 应用价值突出: - 直接服务于智慧农业与生态保护的产业需求 - 标注数据通过农业专家与生态学者双重校验
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值