小澳的葫芦 题解

同步发布与 luogu

网上这么多大佬用 01 分数规划(完全不会),这里写一篇分层图造福社会。

前置芝士:最短路。

一个有向无环图,第一个想到的就是拓扑排序。

定义 d p ( i ) dp(i) dp(i) 为到达第 i i i 个点所需要的经过点数和边权和(一个 pair),正常转移即可。

然后就发现假了。

因为如果能够这样转移,就一定满足:

a x < b y    ⟺    a + w x + 1 < b + w y + 1 ( w ∈ N ) \frac{a}{x} \lt \frac{b}{y} \iff \frac{a + w}{x + 1} \lt \frac{b + w}{y + 1} (w \in \mathbb{N}) xa<ybx+1a+w<y+1b+w(wN)

但显然它不成立。

考虑 dp 数组多开一维。

d p ( i , j ) dp(i, j) dp(i,j) 为第 i i i 个点,走到这需要走 j j j 步时的最小的代价(因为当 a a a 一定时只有 b b b 最小才能使得 b a \frac{b}{a} ab 最小)。

转移就显而易见了。

d p ( i , j ) = min ⁡ k ∈ g i d p ( k , j − 1 ) dp(i, j) = \min _ {k \in g_i} dp(k, j - 1) dp(i,j)=kgimindp(k,j1)

其中 g i g_i gi 表示图中所有能指向 i i i 的点的集合。

但此时我们就不能用拓扑排序,而需要用最短路(dijkstra 或者 SPFA 等)。

namespace zqh {
const int N = 205;

int n, m, dp[N][N], in[N];
vector<pii> g[N];

void dijkstra() {
	p_q<pii, vector<pii>, greater<pii>> q;
	memset(dp, 0x3f, sizeof(dp));
	q.push({1, 1});
	dp[1][1] = 0;
	while (q.size()) {
		int u = q.top().first, step = q.top().second;
		q.pop();
		for (auto [v, w] : g[u]) {
			if (dp[v][step + 1] > dp[u][step] + w) {
				dp[v][step + 1] = dp[u][step] + w;
				q.push({v, step + 1});
			}
		}
	}
}

void init() {
	cin >> n >> m;
	for (int i = 1; i <= m; i++) {
		int u, v, w;
		cin >> u >> v >> w;
		g[u].push_back({v, w});
		in[v]++;
	}
}

void solve() {
	dijkstra();
	double ans = LLONG_MAX * 1.0;
	for (int i = 1; i <= n; i++) {
		ans = min(ans, (double)((double)(dp[n][i]) / (double)(i)));
	}
	cout << fixed << setprecision(3) << ans;
}

void main() {
	init();
	solve();
}
}  // namespace zqh
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值