斐波那契数
1 1 2 3 5 8 13 21 34 55…
像这种前两个数之和=第三个数的就叫做斐波那契数。
公式:fib(n + 2) = fib(n + 1)+fib(n)
可以推导出第n个斐波那契数的公式应该是——>fib(n) = fib(n - 1)+fib(n -2)
1 递归法
可以发现,在这样一个斐波那契数列中,前两个数是1,也就是说说过求的是前面两个数,直接返回一个1就行了。
n>2时才开始进行计算:fib(n) = fib(n - 1)+fib(n -2)
#include <stdio.h>
int fib(int n)
{
if(n <= 2)
{
return 1;
}
else
{
return fib(n - 1) + fib(n - 2);
}
}
int main()
{
int n;
printf("请输入一个数:");
scanf ("%d",&n);
printf("第%d个斐波那契数是%d\n",n,fib(n));
return 0;
}
请输入一个数:10
第10个斐波那契数是55
递归法有个致命的缺点就是,重复度特别高,效率低下。
当输入50的时候计算机足足算了5分钟才反应过来。
请输入一个数:50
第50个斐波那契数是-298632863
50,想要求50的fib数就要先算出49和48的fib数
49 48,想算49和48的fib数又要算48 47 47 46的fib数
48 47 47 46
47 46 46 45 46 45 45 44
…
这样的算法重复度太高,效率非常低,所以其实是很挫的一种方法。
2 循环法
#include <stdio.h>
int fib(int n)
{
int a = 1,b = 1,c = 1;
while(n > 2)//2后面的数才去算
{
c = a + b;
a = b;
b = c;
n--;//让算过fib数的位置再也不要去算了
}
if(1 == n||2 == n)
{
return c;//退出循环之后返回c,c就是算出来的结果
}
}
int main()
{
int n;
printf("请输入一个数:");
scanf ("%d",&n);
printf("第%d个斐波那契数是%d\n",n,fib(n));
return 0;
}
请输入一个数:30
第30个斐波那契数是832040
c = a + b,不停的将前两个数赋给第三个数,所有的数字就在这abc三个数里更新,不需要像递归那样每个数都要去算前面的一堆数字才能算出来。