加速动态磁共振重建的低秩系数分解模型

Low-Rank and Sparse Decomposition Model for Accelerating Dynamic MRI Reconstruction,本文源自2017年8月8日的Journal of Healthcare Engineering,截图如下文章官网截图
文章可以去这里下载,截图如下论文截图

介绍

理论背景

k-t空间的动态磁共振数据采集可以用下式表示

y(k,t)=x(r,t)exp(2πjkr)dr+n(k,t).(1)

其中 y(k,t) 表示观测到的k-t空间信号, x(r,t) 表示期望的动态图像序列, n(k,t) 为观测噪声,它可以用一个额外的白噪声的高斯分布[16][17]来进行合理的模拟.

本文中,问题的解决方案是为了从降采样的观测数据 y(k,t) 中找出磁共振图像 x(r,t) 的最近似表示, (1) 式可以转换为一个逆问题,并且可以重写成向量形式[18]。

Y=RFX+n.(2)

其中 Y=[y1||yT] X=[x1||xT] n=[n1||nT] T 是框架中的元素个数,F为傅里叶变换算子,观测矩阵 R 为降采样掩模,它被用于k空间。

基于压缩感知的磁共振图像重建

压缩感知方法[5,19]被提出用于从部分采样的k空间数据Y中重建出磁共振图像 X ,这一过程是利用稀疏变换和凸优化算法来实习的。如果我们找到满足式(2)的稀疏向量,那么问题将得到解决。

minXDX0s.t.YRFX2ϵ(3)

其中 l0 范数,它用来计算向量中非零元素的个数, D 是稀疏变换或者字典,ϵ是一个较小的常数。不幸的是, (3) 是NP难问题,这需要通过蛮力搜索来解决。压缩感知理论[8]提供了凸松弛方法,指的是 (3) 式中的 l0 范数可以用 l0 范数最小化来代替,
minXDX1s.t.YRFX2ϵ,(4)

其中 l1 范数,表示向量的绝对值之和。

低秩稀疏分解

基于压缩感知的技术已经完全成功地应用于磁共振图像重建,它利用了图像在变换域
的稀疏性。然而, 压缩感知的性能主要依赖于特定的字典或者稀疏算子,这限制了最大可实现的加速度。因此,一些研究者尝试研究一些新方法来重建磁共振图像[20-24]。这些方法中,低秩矩阵恢复是医学图像处理中最流行的一项技术。

低秩的基本假设和[18]一样,也即,图像 X 是同时稀疏(在图像域内)并且低秩的。现在的问题是从给定的少量k-空间数据 Y 中恢复X, 少量数据是相对矩阵中的元素个数而言的。我们假定矩阵的近似秩为 r ,图像的大小为M×N。当矩阵 X 是低秩时,它只有r(M+Nr)个自由度而不是 MN 个, 这就有可能从少量的采样点中通过解决秩最小化问题来恢复矩阵 X

min rank(x)s.t.YMX)2ϵ(5)

然而,秩最小化问题,也即解决式 (5) , 是组合问题也是NP难问题[25]。因此,凸松弛经常用于使得最小化问题更容易处理。

minXXs.t.YMX)2ϵ(6)

其中 M 表示任意的线性算子,X是核范数,可以定义为
X=i=1kσi,(7)

其中 σ1,σ2,,σr X 的奇异值, r X的秩。

为了从给定的 Y 恢复 X ,\boldsymbol{X}可以分解为地址矩阵\boldsymbol{A}和稀疏矩阵\boldsymbol{E}的叠加。

X=A+E(8)

X 可以有下列优化问题的解决方案中恢复:
minA,EA+γEs.t.YM(A+E)2ϵ(9)

其中低秩矩阵 A 有非零奇异值并且表示背景元素,稀疏矩阵 E 有非零元素值,它对应于变化, γ 是可调整参数,用于平衡 l1 范数相对核范数的贡献。

提出方法

在主成分追踪模型[26]中,为了解决式 (9) ,它可以用正则化而不是严格的约束[15]来形成一个优化问题。因此, (9) 可以转换为

minL,SYM(A+E)2F+λLA+λSTE1,(10)

其中参数 λS λL 用于平衡数据一致性, T 是稀疏变换基。

方程(10)是一个正则化的主成分追踪(RPCA)问题,它包括最小化核范数和 l1 范数的组合。Otazo et al. 研究[15]采用了迭代阈值方案去解决 (10) ;然而,迭代阈值收敛慢。因此,我们提出了一种不严格的增强拉格朗日乘子算法来解决RPCA问题[27]。 根据式 (6) 中的约束

MHy=A(n)+E(n)=X(n),(11)

其中 MH 是对偶算子, X(n) 包含观测噪声, A(n) E(n) 分别是低秩元素和稀疏元素。我们应用IALM方法来解决下列优化问题
minL,SA(n)+λTE(n)1+<L,MHyA(n)E(n)>+μ2MHyA(n)E(n)2F(12)

其中 L 是拉格朗日乘子,用来消除等式约束, μ 是一个很小的正标量。条件 +k=1μ1k=+ 表明 μk 不会增长太快。IALM方法用于解决RPCA问题的步骤可以参考算法1.
这里写图片描述
对算法1,如果 {μk} 是非递减并且 +k=1μ1k=+ ,那么在RPCA问题中 (Ak,Ek) 收敛于一个优化解 (A,E) 。无约束 {μk} 的优点是可行性条件 Ak+Ek=X 可以快速逼近,因为 XAkEk=LkLk1/μk1 Lk 是受约束的。在算法1中,单一阈值算子[28]可以定义为

SVTλ(D)=UΛλ(Σ)VH,(13)

其中 D=UΣVH D 的任意一个奇异值分解。 Λλ(Σ) 是软阈值算子,可以定义为
Λλ(Σ)=x|x|max(|x|λ,0).(14)

实验结果与讨论

实验是在MATLAB V7.14.0 (R2012a), Intel Core i7-2640 M CPU, 4.0 GB 内存,64-bit Win7操作系统上运行的。提出的算法采用两个心脏电影数据集, 来进行实验验证。第一个数据集是从Bio Imaging and Signal Processing Lab上获取的,Bio Imaging and Signal Processing Lab
这里包含了 nt=25 个时间框架,大小为 nx=ny=256 ,视野为 345×270mm2 ,层厚为 10mm

第二个数据集可以从的Dr. Caballero网站上获取这里写图片描述
ta是由Caballero et al. [12]引入的,相关的图像参数如下:图像矩阵大小为 256×256(nx×ny) ,时间框架数为30( nt ), FOV=320×320mm2 , 层厚为 10mm .

两种广泛使用的采样轨迹,笛卡尔和径向采样策略被用于 k -空间的MR数据集采样。图1显示了研究中的采样掩模以及他们在一个时间框架上的幅度。

我们从重建精度和重建速度量方面,比较了提出的算法和k-t SLR[10]以及k-t RPCA[16]。定量图像质量评估可以采用峰值信噪比(PSNR)和结构相似性索引(SSIM)这两个准则。PSNR用于估计重建图像和全采样图像之间的差异,可以定义为

PSNR=10log10(X^X2FX2F)(15)

其中 X^ 是重建图像, X 表示全采样图像。

SSIM是测量重建图像和全采样图像之间相似性的一种新方法。对每一个时间框架 {xn}ntn=1 ,我们采用SSIM去测量重建图像和全采样图像之间的差异;同一重建图像 xRec 和全采样图像 xF 之间的SSIM索引可以用下式来评估:

SSIM(x,y)=(2μxRμxF+c1)(2σxRxF+c2)(μ2xR+μ2xF)+c1)(σ2xR+σ2xF+c2),(16)

其中 μxR μxF 是重建图像 xRec 和全采样图像 xF 的平均灰度值 σF σxR 是重建图像 xRec 和全采样图像 xF 的标准差, σxRxF 是重建图像 xRec 和全采样图像 xF 的协方差, c1=(K1L)2 c2=(K2L)2 是常数,其中 L 是动态范围为[0,255]的8位灰度图像。Wang et al. [29]文中建议的参数值为 K1=0.01 k2=0.03 /

k-t SLR算法结合了TV和非凸Schatten p范数,其中 p=0.01 ; 一些参数选为基于公开的软件包中的推荐值(Schatten惩罚项参数 β1=109 , TV范数中则为 β2=102 , 最大的内部迭代数为50, 最大的外部迭代数为9)。在k-t RPCA算法中,两个正则化参数为 μ=200 ρ=1.5 ,分别对应正则化项和分解项。

类似地,本文提出的这一方法需要三个参数 λ ρ μ 的具体化。我们设定 μ0=1.5/X2 ρ=1.2 。我们采取 XAkEkF/XF<107 作为算法1的终止条件。在[16]作者的建议下,我们选择了一个固定的加权参数 λ=max(nxny,nt)1/2 ,提出的算法经实验验证有效,采用了全采样的心脏电影(前文提到的两个数据集)以及两种不同的采样轨迹。

为了仿真 k -空间的加速,全采样k-空间数据是通过变密度(采样因子)随机采样方式人为降采样来实现的。为了测试所提出的方法的鲁棒性,两个数据集的 k -空间数据都被固定标准差σ=15的高斯白噪声污染了。首先,在第一个心脏数据集上进行测试,采用了不同的采样模型,同时采用了不同的采样率。图2中展示了可视化质量比较,它比较了提出的方法(算法1)和其他算法的重建结果。笛卡尔采样掩模的加速因子近似为4(大约是获取数据的25%)。图3展示了笛卡尔采样和伪径迹采样方式重建结果的PSNR,其中采样方式是关于采样因子的函数。可以看出在伪径迹采样方式情况下,本文提出的算法的性能由于其他两个方法。但是在低采样率笛卡尔采样方式下,本文算法的性能稍微差于k-t SLR方法。此外,图4展示了在笛卡尔和径迹两种采样方式在同一采样因子(加速因子近似为6,大约16.4%的获取数据)下,不同时间框架的SSIM。实验结果表明提出的方法就SSIM而言,实现了较优越的结果。当采用伪径迹采样方式而不是笛卡尔采样方式时, 并且因此我们的方法的优势相对而言更明显。

更多地,我们用同样的方法在第二个心脏数据集上测试我们提出的方法。图5提供了可视化估计

总结

本文中,我们提出了一种快速算法(IALM),用于解决RPCA优化问题,从而从高度降采样 k <script type="math/tex" id="MathJax-Element-141">k</script>-空间数据中恢复出dMRI序列。我们提出的算法具有一般性,可用于将动态磁共振数据分离成低秩部分和稀疏部分。并且这一算法可以从部分观测数据同时重建和分离动态MR数据。在心脏数据集上进行的实验验证了算法的有效性和高效性, 相比最先进的算法而言。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值