Spark Job优化

31 篇文章 4 订阅 ¥19.90 ¥99.00
本文详细探讨了Spark作业的优化,包括Map端的优化(如Map端聚合、小文件读取优化、增大map溢写输出流buffer)、Reduce端优化(如合理设置Reduce数、输出小文件优化、增大reduce缓冲区、调节重试次数和等待间隔)以及整体优化(如调节数据本地化等待时长、使用堆外内存和调节连接等待时长)。通过这些策略,可以显著提高Spark作业的性能和效率。
摘要由CSDN通过智能技术生成

1 Map端优化

1.1 Map端聚合

map-side预聚合,就是在每个节点本地对相同的key进行一次聚合操作,类似于MapReduce中的本地combiner。map-side预聚合之后,每个节点本地就只会有一条相同的key,因为多条相同的key都被聚合起来了。其他节点在拉取所有节点上的相同key时,就会大大减少需要拉取的数据数量,从而也就减少了磁盘IO以及网络传输开销。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shangjg3

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值