ClickHouse系列(14)—— ClickHouse数据一致性

本文探讨了ClickHouse在数据一致性方面的特性,特别是在使用ReplacingMergeTree和SummingMergeTree时可能出现的问题。介绍了通过手动OPTIMIZE、GROUP BY去重、FINAL查询等方法解决数据不一致的方案,并对比了ClickHouse不同版本中FINAL查询的性能变化,强调了在追求性能与一致性之间的权衡。
摘要由CSDN通过智能技术生成

查询CK手册发现,即便对数据一致性支持最好的Mergetree,也只是保证最终一致性

我们在使用 ReplacingMergeTree、SummingMergeTree 这类表引擎的时候,会出现短暂数据不一致的情况。

在某些对一致性非常敏感的场景,通常有以下几种解决方案。

ClickHouse 是一个列式数据库管理系统,用于存储和处理大规模数据。在写入 ClickHouse 数据时,可能会涉及到数据一致性问题。 ClickHouse 默认情况下是可扩展的,它使用主从复制机制提供高可用性。在数据写入时,首先将数据写入主节点,然后主节点将数据进行复制并同步到所有从节点上。这确保了数据的冗余备份和高可用性。 然而,由于主从复制需要一定的时间,从节点可能会稍有延迟。因此,从节点上的数据可能会略微滞后于主节点上的数据。这意味着当数据写入完成后,立刻从从节点上查询可能无法得到最新的结果。 为了解决这一问题,ClickHouse 提供了两个级别的一致性保证: 1. 弱一致性(Eventual Consistency):这是 ClickHouse 的默认行为。在写入后的瞬间,从节点可能会滞后于主节点,但之后它们会趋向于一致。这种滞后是由于数据在网络上的传输延迟造成的。这种弱一致性可以满足大多数应用场景的需求,尤其是大规模数据分析和实时报表生成。 2. 强一致性(Strong Consistency):ClickHouse 也提供了强一致性的选项,可以通过配置来确保主节点和从节点的数据保持一致。使用这种模式会引入一定的性能开销,因为主节点会在每次写入操作完成后等待所有从节点进行数据复制和同步。 在实际应用中,根据具体的业务需求和对数据一致性的要求,可以选择适合的一致性级别。弱一致性是 ClickHouse 的默认模式,适用于大多数场景。而如果对数据实时一致性和精确性要求很高,可以选择强一致性模式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shangjg3

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值