人工智能(AI)旨在打造模仿智能行为的系统。它覆盖了众多方法,涵盖了基于逻辑、搜索和概率推理的技术。机器学习是 AI 的一个分支,它通过对观测数据进行数学模型拟合来学习决策制定。这个领域近年来迅猛发展,现在几乎(虽不完全准确)与 AI 同义。
深度神经网络是一类机器学习模型,将其应用到数据上的过程称为深度学习。目前,深度网络是最强大和最实用的机器学习模型之一,常见于日常生活中。我们常常用自然语言处理(Natural Language Processing)算法翻译文本、用计算机视觉(Computer Vision)系统搜索特定对象的图片,或通过语音识别(Speech Recognition)界面与数字助理交谈,这些都是深度学习的实际应用。
机器学习方法大体上分为三大类:监督学习(Supervised Learning)、无监督学习(Unsupervised Learning)和强化学习(Reinforcement Learning)。目前,这三大类的前沿方法均依赖于深度学