2013年12月15日

        socket = mFactory.createSocket(host, port);
        assertNotNull(socket);
        assertNotNull(socket.getOutputStream());
        assertNotNull(socket.getInputStream());

        // it throw exception when calling createSocket(String, int, InetAddress, int)
        // The socket level is invalid.
    }

    // a host and port that are expected to be available but have
    // a cert with a different CN, in this case CN=mtalk.google.com
    private static String TEST_CREATE_SOCKET_HOST = "mobile-gtalk.l.google.com";
    private static int TEST_CREATE_SOCKET_PORT = 5228;

   
    public void test_createSocket_simple() throws Exception {
        try {

        socket = mFactory.createSocket(host, port);
        assertNotNull(socket);
        assertNotNull(socket.getOutputStream());
        assertNotNull(socket.getInputStream());

        // it throw exception when calling createSocket(String, int, InetAddress, int)
        // The socket level is invalid.
    }

    // a host and port that are expected to be available but have
    // a cert with a different CN, in this case CN=mail.google.com
    private static String TEST_CREATE_SOCKET_HOST = "googlemail.com";
    private static int TEST_CREATE_SOCKET_PORT = 443;

   
    public void test_createSocket_simple() throws Exception {
        try {

https://android-review.googlesource.com/#/c/64102/
以下是一个基于PyTorch的代码示例,用于将时间序列数据编码为固定长度的向量,并使用窗口滑动法划分训练集、验证集和测试集。请注意,此示例假设您已经将时间戳数据加载到一个名为“timestamps”的Pandas Series对象中,并将其按照时间顺序排序。 ```python import torch import pandas as pd import numpy as np # 定义窗口大小和步长 window_size = 24 # 窗口大小为 24 个时间戳 step_size = 1 # 步长为 1 个时间戳 # 将时间戳序列转换为 numpy 数组 timestamps = pd.to_datetime(timestamps) timestamps = np.array(timestamps) # 将时间戳归一化为 0 到 1 之间的值 timestamps = (timestamps - timestamps[0]) / (timestamps[-1] - timestamps[0]) # 定义滑动窗口 def sliding_window(data, window_size, step_size): windows = [] for i in range(0, len(data) - window_size + 1, step_size): window = data[i:i + window_size] windows.append(window) return windows # 将时间戳序列划分为多个窗口 windows = sliding_window(timestamps, window_size, step_size) # 将每个窗口编码为一个固定长度的向量 def encode_window(window): encoded = np.zeros((window_size,)) for i, timestamp in enumerate(window): encoded[i] = timestamp return encoded encoded_windows = [] for window in windows: encoded = encode_window(window) encoded_windows.append(encoded) # 将编码后的窗口转换为 PyTorch 张量 data = torch.tensor(encoded_windows, dtype=torch.float32) # 定义数据集划分比例 train_ratio = 0.7 valid_ratio = 0.2 test_ratio = 0.1 # 计算数据集划分大小 train_size = int(train_ratio * len(data)) valid_size = int(valid_ratio * len(data)) test_size = len(data) - train_size - valid_size # 划分数据集 train_data, valid_data, test_data = torch.utils.data.random_split(data, [train_size, valid_size, test_size]) # 定义数据加载器 batch_size = 32 train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True) valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=True) ``` 在这个示例中,我们首先将时间戳归一化为0到1之间的值,然后使用`sliding_window()`函数将时间戳序列划分为多个窗口,每个窗口包含24个时间戳。接下来,我们将每个窗口编码为一个24维的向量,并将编码后的窗口转换为PyTorch张量。最后,我们使用`torch.utils.data.random_split()`函数将数据集划分为训练集、验证集和测试集,并将每个数据集加载到对应的数据加载器中。 请注意,此示例仅提供了一个基本框架,您可以根据需要进行修改和优化,以便更好地适应您的应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值