GAN--7 info GAN VAE-GAN BiGAN

用GAN做 feature extraction

infoGAN

原来的GAN:
在这里插入图片描述
infoGAN:
把输入z分成两部分,假设z是20维,把前十维叫做c,后十维叫做z‘。
训练一个classifier:看generator输出的x,反推出输入的c。可以将generator看做encoder,classifier看做decoder,二者合起来看做一个auto-encoder。这个auto-encoder和一般的auto-encoder正好相反:输入一张图片,预测产生图片的code c
在这里插入图片描述

VAE-GAN

对encoder:
最小化重建误差;让z接近normal
对generator:
最小化重建误差;骗过discriminator
对discriminator:
辨别真实图、生成图和重建图
在这里插入图片描述

BiGAN

encoder:输入图片x,输出编码z
decoder:输入编码z,输出图片
二者的输入输出不是接在一起的;不会把encoder的输出传给decoder,也不会把decoder的输出传给encoder
在这里插入图片描述
添加一个discriminator:
输入x和z,判别一组(x,z)来自encoder还是decoder
在这里插入图片描述
算法:
在这里插入图片描述
BiGAN和AutoEncoder在最优条件下训练结果相同。
在这里插入图片描述

Triple GAN

一个generator,一个discriminator,一个classifier。
其中generator和discriminator组成conditional GAN
少量的label data,大量的unlabel data
在这里插入图片描述

Domain-adversarial training

在这里插入图片描述
绿色是生成器,输入照片x,输出特征 f
粉色是判别器,判别当前特征 f 输入哪个domain
蓝色分类器,判断当前特征 f 输入哪个class
上述三个是同时进行的。

内容概要:文章详细探讨了数据连接性和云集成在增强汽车电子电气架构(EEA)方面的重要作用。首先介绍了从分布式到集中式架构的技术演进,解释了域集中式和中央集中式架构的优势,如远程软件升级(OTA)、软硬件解耦等。其次,阐述了云平台在远程软件更新、数据存储与分析等方面的支持作用。接着,强调了数据连接性在实时通信、低延迟决策、多模态传感器融合以及工业物联网集成中的核心作用。此外,讨论了云集成在个性化服务、AI助手、自动驾驶训练与仿真、预测性维护等方面的应用。最后,分析了市场需求与政策支持对这一领域的影响,并展望了未来的发展趋势,如5G-A/6G、边缘计算与AI大模型的融合。 适用人群:汽车电子工程师、智能网联汽车行业从业者及相关领域的研究者。 使用场景及目标:①理解汽车电子电气架构从分布式到集中式的演进过程及其带来的优势;②掌握数据连接性和云集成在提升车辆智能化水平的具体应用和技术细节;③了解相关政策法规对智能网联汽车发展的支持与规范;④探索未来技术发展趋势及其可能带来的变革。 其他说明:本文不仅提供了技术层面的深入解析,还结合了实际应用案例,如特斯拉、蔚来、中联重科、约翰迪尔等企业的实践成果,有助于读者全面理解数据连接性和云集成在现代汽车工业中的重要地位。同时,文中提及的政策法规也为行业发展指明了方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值