zoj 3541 - The Last Puzzle(动规)

转自watashi神的:

隐藏在模型后面的,其实是一个经典得不能再经典的动态规划问题了。

很容易证明,如果有解的话,下面的方案一定能求到一个最优解:

需要按下的开关总是一个区间,每次要么按下最左边的开关,要么按下最右边的开关。所以dp[l][r][0 or 1],

转移是O(1)的,复杂度为O(n^2)。

#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <stack>
#include <queue>
#include <vector>
#include <algorithm>
#include <set>
#include <map>

#define M 205
#define INF 0x7ffffff //不能定义的太大,否则在状态转移的时候有可能会超int的
#define eps 1e-8
#define LL long long
#define LLU unsigned long long

using namespace std;

int n, t[M], l[M], d[M][M][2], next[M][M][2];
int dp(int x, int y, int f)
{
    int &ans = d[x][y][f];
    if(ans!=-1) return ans;
    if(x==y) return ans = 0;
    ans = INF;
    if(t[x]>dp(x+1,y,0)+l[x+1]-l[x]&&ans>d[x+1][y][0]+l[x+1]-l[x]+(f==1?l[y]-l[x]:0))
    {
        ans = d[x+1][y][0]+l[x+1]-l[x]+(f==1?l[y]-l[x]:0);
        next[x][y][f] = 0;
    }
    if(t[y]>dp(x,y-1,1)+l[y]-l[y-1]&&ans>d[x][y-1][1]+l[y]-l[y-1]+(f==0?l[y]-l[x]:0))
    {
        ans = d[x][y-1][1]+l[y]-l[y-1]+(f==0?l[y]-l[x]:0);
		next[x][y][f] = 1;
    }
    return ans;
}
void print(int x, int y, int f)
{
    if(x==y) { printf("%d\n", x+1); return; }
    else if(next[x][y][f]==0)
    {
        printf("%d ", x+1);
        print(x+1,y,0);
    }
    else
    {
        printf("%d ", y+1);
        print(x,y-1,1);
    }
}
int main()
{
    while(~scanf("%d", &n))
    {
        for(int i = 0; i < n; ++i)
            scanf("%d", &t[i]);
        for(int i = 0; i < n; ++i)
            scanf("%d", &l[i]);
        for(int i = 0; i <= n; ++i)
            for(int j = i; j <= n; ++j)
                d[i][j][0] = d[i][j][1] = -1;
        if(dp(0,n-1,0)==INF)
            puts("Mission Impossible");
        else  print(0,n-1,0);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值