转自watashi神的:
隐藏在模型后面的,其实是一个经典得不能再经典的动态规划问题了。
很容易证明,如果有解的话,下面的方案一定能求到一个最优解:
需要按下的开关总是一个区间,每次要么按下最左边的开关,要么按下最右边的开关。所以dp[l][r][0 or 1],
转移是O(1)的,复杂度为O(n^2)。
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <stack>
#include <queue>
#include <vector>
#include <algorithm>
#include <set>
#include <map>
#define M 205
#define INF 0x7ffffff //不能定义的太大,否则在状态转移的时候有可能会超int的
#define eps 1e-8
#define LL long long
#define LLU unsigned long long
using namespace std;
int n, t[M], l[M], d[M][M][2], next[M][M][2];
int dp(int x, int y, int f)
{
int &ans = d[x][y][f];
if(ans!=-1) return ans;
if(x==y) return ans = 0;
ans = INF;
if(t[x]>dp(x+1,y,0)+l[x+1]-l[x]&&ans>d[x+1][y][0]+l[x+1]-l[x]+(f==1?l[y]-l[x]:0))
{
ans = d[x+1][y][0]+l[x+1]-l[x]+(f==1?l[y]-l[x]:0);
next[x][y][f] = 0;
}
if(t[y]>dp(x,y-1,1)+l[y]-l[y-1]&&ans>d[x][y-1][1]+l[y]-l[y-1]+(f==0?l[y]-l[x]:0))
{
ans = d[x][y-1][1]+l[y]-l[y-1]+(f==0?l[y]-l[x]:0);
next[x][y][f] = 1;
}
return ans;
}
void print(int x, int y, int f)
{
if(x==y) { printf("%d\n", x+1); return; }
else if(next[x][y][f]==0)
{
printf("%d ", x+1);
print(x+1,y,0);
}
else
{
printf("%d ", y+1);
print(x,y-1,1);
}
}
int main()
{
while(~scanf("%d", &n))
{
for(int i = 0; i < n; ++i)
scanf("%d", &t[i]);
for(int i = 0; i < n; ++i)
scanf("%d", &l[i]);
for(int i = 0; i <= n; ++i)
for(int j = i; j <= n; ++j)
d[i][j][0] = d[i][j][1] = -1;
if(dp(0,n-1,0)==INF)
puts("Mission Impossible");
else print(0,n-1,0);
}
return 0;
}