本文转自:https://blog.csdn.net/baidu_31437863/article/details/84474847
1. 简介
深度学习(Deep Learning)因其计算复杂度或参数冗余,在一些场景和设备上限制了相应的模型部署,需要借助模型压缩、优化加速、异构计算等方法突破瓶颈。
- 模型压缩算法能够有效降低参数冗余,从而减少存储占用、通信带宽和计算复杂度,有助于深度学习的应用部署,具体可划分为如下几种方法(后续重点介绍剪枝与量化):
- 线性或非线性量化:1/2bits, int8 和 fp16等;
- 结构或非结构剪枝:deep compression, channel pruning 和 network slimming等;
- 其他:权重矩阵的低秩分解,知识蒸馏与网络结构简化(squeeze-net, mobile-net, shuffle-net)等;
- 模型优化加速能够提升网络的计算效率,具体包括:
- Op-level的快速算法:FFT Conv2d (7x7, 9x9), Winograd Conv2d (3x3, 5x5) 等;
- Layer-level的快速算法:Sparse-block net [1] 等;
- 优化工具与库:TensorRT (Nvidia), Tensor Comprehension (Facebook) 和 Distiller (Intel) 等;
- 异构计算方法借助协处理硬件引擎(通常是PCIE加速卡、ASIC加速芯片或加速器IP),完成深度学习模型在数据中心或边缘计算领域的实际部署,包括GPU、FPGA或DSA (Domain Specific Architecture) ASIC等。异构加速硬件可以选择定制方案,通常能效、性能会更高,目前市面上流行的AI芯片或加速器可参考 [2]。针对数据中心部署应用,通常选择通用方案,会有较完善的生态支持,例如NVIDIA GPU的CUDA生态,或者Xilinx即将推出的xDNN生态:
2. 网络剪枝
深度学习模型因其稀疏性,可以被裁剪为结构精简的网络模型,具体包括结构性剪枝与非结构性剪枝:、
- 非结构剪枝:通常是连接级、细粒度的剪枝方法,精度相对较高,但依赖于特定算法库或硬件平台的支持,如Deep Compression [5], Sparse-Winograd [6] 算法等;
- 结构剪枝:是filter级或layer级、粗粒度的剪枝方法,精度相对较低,但剪枝策略更为有效,不需要特定算法库或硬件平台的支持,能够直接在成熟深度学习框架上运行。如局部方式的、通过layer by layer方式的、最小化输出FM重建误差的Channel Pruning [7], ThiNet [8], Discrimination-aware Channel Pruning [9];全局方式的、通过训练期间对BN层Gamma系数施加L1正则约束的Network Slimming [10];全局方式的、按Taylor准则对Filter作重要性排序的Neuron Pruning [11];全局方式的、可动态重新更新pruned filters参数的剪枝方法 [12];
3. 模型量化
模型量化是指权重或激活输出可以被聚类到一些离散、低精度的数值点上,通常依赖于特定算法库或硬件平台的支持:
- 二值化网络:XNORnet [13], ABCnet with Multiple Binary Bases [14], Bin-net with High-Order Residual Quantization [15], Bi-Real Net [16];
- 三值化网络:Ternary weight networks [17], Trained Ternary Quantization [18];
- W1-A8 或 W2-A8量化: Learning Symmetric Quantization [19];
- INT8量化:TensorFlow-lite [20], TensorRT [21];
- 其他(非线性):Intel INQ [22], log-net, CNNPack [23] 等;
更多案例请关注“思享会Club”公众号或者关注思享会博客:http://gkhelp.cn/