与以磁盘存储为主的普通数据库相比,内存数据库的数据访问速度可以高出几个数量级,能大幅提高运算性能,更适合高并发、低延时的业务场景。
不过,当前大部分内存数据库仍然采用 SQL 模型,而 SQL 缺乏一些必要的数据类型和运算,不能充分利用内存的特征实现某些高性能算法。仅仅是把外存的数据和运算简单地搬进内存,固然也能获得比外存好得多的性能,但还没有充分利用内存特征,也就不能获得极致的性能。
内存可以通过地址(指针)来访问。但 SQL 没有用内存指针表示的数据对象,在返回结果集时,通常要把数据复制一份,形成一个新的数据表。这样不仅多消耗 CPU 时间(用于复制数据)而且还会占用更多昂贵的内存空间(用于存储复制的数据),降低内存使用率。
除了 SQL 型的内存数据库外,Spark 中的 RDD 也有这个问题,而且情况更严重。为了保持 RDD 的 immutable 特性,Spark 在每个计算步骤后都会复制出新的 RDD,造成内存和 CPU 的大量浪费。所以,即使耗用了巨大资源,Spark 也仍然做不到高性能。相比之下,SQL 型的内存数据库通常还会优化,在 SQL 语句中的计算会尽量使用内存地址,通常要比 Spark 的性能更好。
但是,受到理论限制,实现 SQL 的逻辑时,返回的结果集就必须复制了。如果涉及多步骤的过程运算,要多次在上一步的结果集(临时表)基础上进一步计算,SQL 的劣势就会很明显了。
事实上,如果没有改变数据结构,我们可以直接用原数据的地址形成结果集,不需要复制数据本身,仅仅多保存一个地址(指针),同时减少 CPU 和内存的消耗。
SPL 扩展了 SQL 的数据类型,支持这种指针式复用机制。比如,对订单表按照订单日期(odate)范围过滤后,分别求出订单金额(amount1)大于 1000 和运货费(amount2)大于 1000 的订单,再计算出两者的交集、并集和差集,最后将差集按照客户号(cid)排序。SPL 代码大致是这样:
外键关联是指用一个表(事实表)的非主键字段,去关联另一个表(维表)的主键。比如订单表中的客户号和产品号分别关联客户表、产品表的主键。现实运算中这种关联可能多达七八个甚至十几个表,还可能出现多层的关联。SQL 数据库通常使用 HASH JOIN 算法来做内存连接,需要计算和比对 HASH 值,过程中还会占用内存来存储中间结果,关联表很多时计算性能就会急剧下降。
其实,我们也可以利用内存指针引用机制事先做好关联。在系统初始化阶段,把事实表中的关联字段值转换为对应维表记录的指针。因为维表的关联字段是主键,所以关联记录唯一,将外键值转换成记录指针不会引起错误。在后续计算中,需要引用维表字段时,可以用指针直接引用,无需计算和比对 HASH 值,也不需要再存储中间结果,从而获得更优的性能。SQL 没有记录指针这种数据类型,也就无法实现预关联了。
————————————————
版权声明:本文为CSDN博主「陈橘又青」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/m0_63947499/article/details/128917386