python中Fearturetools三个基本概念

本文介绍Featuretools,一个开源的自动化特征工程库,通过实例讲解其核心概念,如特征基元(FeaturePrimitives)、实体(Entity)和深度特征合成(dfs)。探讨如何利用这些工具提高特征工程效率并构建高效模型。
摘要由CSDN通过智能技术生成

常规特征工程学方法通过人工构造特征,是一个繁琐、费时且易出错的过程。自动化特征工程是一个通过诸如Fearturetools之类的工具,从一组相关数据表中自动产生有用特征的过程。与手工生成的特征相比,该方法效率更高,重复性更高,并能更快的建立模型。
python学习网
一、Featuretools是什么?

Featuretools是一个用于执行自动化特征工程的开源库。

二、Featuretools基本的三个概念

1、Feature Primitives(特征基元):

生成特征的常用方法,分为聚合、转换的方式。

特征加工方法

import featuretools as ft

 

ft.list_primitives()

2、Entity(实体)

可以被看作类似Pandas DataFrame, 多个实体的集合称为Entityset。

实体间可以根据关联键添加关联关系Relationship。

3、dfs(深度特征合成)

是从多个数据集创建新特征的过程,可以通过设置搜索的最大深度(max_depth)来控制所特征生成的复杂性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值