222. Count Complete Tree Nodes
Given a complete binary tree, count the number of nodes.
Definition of a complete binary tree from Wikipedia:
In a complete binary tree every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible. It can have between 1 and 2h nodes inclusive at the last level h.
[思路]
用暴力法, recursive求会超时 O(N). 如果从某节点一直向左的高度 = 一直向右的高度, 那么以该节点为root的子树一定是complete binary tree. 而 complete binary tree的节点数,可以用公式算出 2^h - 1. 如果高度不相等, 则递归调用 return countNode(left) + countNode(right) + 1. 复杂度为O(h^2)
完全递归的写法:
int countNodes(TreeNode* root) {
if(!root)
return 0;
else
return 1+countNodes(root->left)+countNodes(root->right);
}
超时,改进后如下:
int countNodes(TreeNode* root) {
if(!root) return 0;
int hl=0, hr=0;
TreeNode *l=root, *r=root;
while(l) {hl++;l=l->left;}
while(r) {hr++;r=r->right;}
if(hl==hr) return pow(2,hl)-1;
return 1+countNodes(root->left)+countNodes(root->right);
}