shanshanpt的专栏

新博客地址: okyes.me

位运算的应用和实例( 摘 )
位运算应用口诀
清零取数要用与,某位置一可用或
若要取反和交换,轻轻松松用异或

移位运算
要点 1 它们都是双目运算符,两个运算分量都是整形,结果也是整形。
    2 "<<"左移:右边空出的位上补0,左边的位将从字头挤掉,其值相当于乘2。
    3">>"右移:右边的位被挤掉。对于左边移出的空位,如果是正数则空位补0,若为负数,可能补0或补1,这取决于所用的计算机系统。
    4">>>"运算符,右边的位被挤掉,对于左边移出的空位一概补上0。

位运算符的应用 (源操作数s 掩码mask)
(1) 按位与-- &
1 清零特定位 (mask中特定位置0,其它位为1,s=s&mask)
2 取某数中指定位 (mask中特定位置1,其它位为0,s=s&mask)
(2) 按位或-- |
   常用来将源操作数某些位置1,其它位不变。 (mask中特定位置1,其它位为0 s=s|mask)
(3) 位异或-- ^
1 使特定位的值取反 (mask中特定位置1,其它位为0 s=s^mask)
2 不引入第三变量,交换两个变量的值 (设 a=a1,b=b1)
   目标          操作             操作后状态
a=a1^b1        a=a^b             a=a1^b1,b=b1
b=a1^b1^b1     b=a^b             a=a1^b1,b=a1
a=b1^a1^a1     a=a^b             a=b1,b=a1


a  ^= b
b ^=  a
b ^= b
这样3步,即可交换两个数字
且没有占用空间.

二进制补码运算公式:
(看到这些功能,似乎没必要了解补码的原理)
-x = ~x + 1 = ~(x-1)
~x = -x-1
-(~x) = x+1
~(-x) = x-1
x+y = x - ~y - 1 = (x|y)+(x&y)
x-y = x + ~y + 1 = (x|~y)-(~x&y)
x^y = (x|y)-(x&y)
x|y = (x&~y)+y
x&y = (~x|y)-~x
x==y:   ~(x-y|y-x)
x!=y:   x-y|y-x
x<y:   (x-y)^((x^y)&((x-y)^x))
x<=y:   (x|~y)&((x^y)|~(y-x))
x<y:   (~x&y)|((~x|y)&(x-y))//无符号x,y比较
x<=y:   (~x|y)&((x^y)|~(y-x))//无符号x,y比较

应用举例
(1)判断int型变量a是奇数还是偶数          
a&1   = 0偶数
      a&1 =   1奇数
(2) 取int型变量a的第k位(k=0,1,2……sizeof(int)),即a>>k&1  (先右移再与1)

(3)将int型变量a的第k位清0,即a=a&~(1<<k)   (10000 取反后为00001 )

(4)将int型变量a的第k位置1,即a=a|(1<<k)     

(5)int型变量循环左移k次,即a=a<<k|a>>16-k  (设sizeof(int)=16)
(6)int型变量a循环右移k次,即a=a>>k|a<<16-k  (设sizeof(int)=16)
(7)整数的平均值
对于两个整数x,y,如果用 (x+y)/2 求平均值,会产生溢出,因为 x+y可能会大于INT_MAX,但是我们知道它们的平均值是肯定不会溢出的,我们用如下算法:

  1. int average(int x, int y)   //返回X、Y的平均值  
  2. {     
  3.      return (x & y) + ( (x^y)>>1 );  
  4. }  

(8)对于一个数 x >= 0,判断是不是2的幂。

  1. boolean power2(int x)  
  2. {  
  3.     return ( (x&(x-1))==0) && (x!=0);  
  4. }  

(9)不用temp交换两个整数

  1. void swap(int x , int y)  
  2. {  
  3.     x ^= y;  
  4.     y ^= x;  
  5.     x ^= y;  
  6. }  

(10)计算绝对值

  1. int abs( int x )  
  2. {  
  3.     int y ;  
  4.     y = x >> 31 ;  
  5.     return (x^y)-y ;        //or: (x+y)^y   
  6. }  

(11)取模运算转化成位运算 (在不产生溢出的情况下)
         a % (2^n) 等价于 a & (2^n - 1)
(12)乘法运算转化成位运算 (在不产生溢出的情况下)
         a * (2^n) 等价于 a<< n
(13)除法运算转化成位运算 (在不产生溢出的情况下)
         a / (2^n) 等价于 a>> n
        例: 12/8 == 12>>3
(14) a % 2 等价于 a & 1      
(15) if (x == a)

                  x= b;
   else      x= a;
        等价于 x= a ^ b ^ x;
(16) x 的 相反数 表示为 (~x+1)
(17)输入2的n次方:1 << 19
(18)乘除2的倍数:千万不要用乘除法,非常拖效率。只要知道左移1位就是乘以2,右移1位就是除以2就行了。比如要算25 * 4,用25 << 2就好啦

 

实例

    功能              |          示例            |    位运算
----------------------+---------------------------+--------------------
去掉最后一位          | (101101->10110)          | x >> 1
在最后加一个0        | (101101->1011010)        | x < < 1
在最后加一个1        | (101101->1011011)        | x < < 1+1
把最后一位变成1      | (101100->101101)          | x | 1
把最后一位变成0      | (101101->101100)          | x | 1-1
最后一位取反          | (101101->101100)          | x ^ 1
把右数第k位变成1      | (101001->101101,k=3)      | x | (1 < < (k-1))
把右数第k位变成0      | (101101->101001,k=3)      | x & ~ (1 < < (k-1))
右数第k位取反        | (101001->101101,k=3)      | x ^ (1 < < (k-1))
取末三位              | (1101101->101)            | x & 7
取末k位              | (1101101->1101,k=5)      | x & ((1 < < k)-1)

取右数第k位          | (1101101->1,k=4)          | x >> (k-1) & 1

把末k位变成1          | (101001->101111,k=4)      | x | (1 < < k-1)
末k位取反            | (101001->100110,k=4)      | x ^ (1 < < k-1)
把右边连续的1变成0    | (100101111->100100000)    | x & (x+1)
把右起第一个0变成1    | (100101111->100111111)    | x | (x+1)
把右边连续的0变成1    | (11011000->11011111)      | x | (x-1)
取右边连续的1        | (100101111->1111)        | (x ^ (x+1)) >> 1
去掉右起第一个1的左边 | (100101000->1000)        | x & (x ^ (x-1))
判断奇数       (x&1)==1
判断偶数        (x&1)==0  

 

摘自:

    http://blog.csdn.net/hackbuteer1/article/details/6725252

 


阅读更多
文章标签: 算法
个人分类: 好玩的东东~程序
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

位运算的应用和实例( 摘 )

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭