机器学习
文章平均质量分 87
我不是企鹅
这个作者很懒,什么都没留下…
展开
-
岭回归、lasso回归、ElasticNet回归概念整理
1.引入 为了防止过拟合的现象出现,引入正则化方法。 (1)岭回归就是引入L2正则化项 (2)lasso回归就是引入L1正则化项 (3)ElasticNet回归就是引入L1和L2正则化项(lasso和ridge回归组合)。 公式: 2.概念 将下面之前先来了解一下什么叫L0/L1/L2范数 L0:向量中非零元素个数 L1:向量中各元素的绝对值之和(美称‘稀疏规则算子’) L2:向量中...原创 2018-08-06 10:17:07 · 3892 阅读 · 0 评论 -
决策树模型 ID3/C4.5/CART算法比较
转自https://www.cnblogs.com/wxquare/p/5379970.html,增加了少量内容 决策树模型在监督学习中非常常见,可用于分类(二分类、多分类)和回归。虽然将多棵弱决策树的Bagging、Random Forest、Boosting等tree ensembel 模型更为常见,但是“完全生长”决策树因为其简单直观,具有很强的解释性,也有广泛的应用,而且决策...转载 2018-07-11 09:49:30 · 4021 阅读 · 0 评论