线面分割问题(递推)

本文探讨了线、折线和封闭曲线分割平面的问题,以及平面如何分割空间。通过递推公式详细分析了每种情况下的最多分割区域数量,包括n条直线最多能分割的平面数、折线分平面的两种思路以及封闭曲线分平面问题。同时,给出了相关ACM竞赛题目和解题代码链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.n条直线分割最多平面问题

要想分割的面最多,假设前n-1条直线已经将平面分成f(n-1)个平面了,那么第n条直线分割时与前n条直线都相交,才能分割出最多的平面,第n条直线与前n-1条共有n-1个交点,这n-1个交点把第n条直线分割成n-2条线段和2条射线,每条线段及射线将已有的区域一分为二,这样就增加了n-2+2(也就是n)个区域,递推公式就为f(n)=f(n-1)+n。

2.折线分平面问题

题目:http://acm.hdu.edu.cn/showproblem.php?pid=2050

ac代码:https://paste.ubuntu.com/p/XZrH4QVj5C/

第一种思路:由直线分平面的思路来推折线分平面问题,第n条折线与前n-1条折线有4*(n-1)个交点,那么新增的线段数为4*(n-1),射线数为2,但折线头部的两条线段只能增加1个区域,所以递推公式为f(n)=f(n-1)+4*(n-1)+2-1;

第二种思路:如下图,先把折线看成两条平行线,第n对平行线中其中一条与前n-1对平行线相交,新增了2*(n-1)+1个区域,(具体看图3),平行线为两条,所以新增了2*[2*(n-1)+1]个区域&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值