期望DP

推荐一篇大佬的博客:https://www.cnblogs.com/hua-dong/p/8166093.html

直接上例题

1、hdu4405

题意:有n+1个点编号从0->n,有m组通道可以直接从xi->yi不需要花费一次走的次数,每次可投一个骰子,如果点数为x,当前处于i点,即可走到i+x位置,求走到n点的花费的次数的期望。

分析:期望dp一般都是从后往前推,设dp[i]表示从i->n所花费次数期望,显然dp[n]=0,如果没有通道就是

dp[i]+=\sum_{j=1}^{6}\frac{dp[i+j]}{6}+1,如果有通道(u->v)则是dp[u]=dp[v],此时不需要加1,因为没有耗费,最后就是求一下dp[0]即可。

Ac code:

#include <bits/stdc++.h>
using namespace std;
const int maxn=1e5+5;
int mp[maxn];
double dp[maxn];
int main()
{
    int n,m,u,v;
    while(~scanf("%d%d",&n,&m)&&(n+m)){
        for(int i=1;i<=m;i++){
            scanf("%d%d",&u,&v);
            mp[u]=v;
        }
        dp[n]=0;
        for(int i=n-1;i>=0;--i)
        {
            if(!mp[i])
            {
                for(int j=1;j<=6;j++)
                    dp[i]+=dp[i+j]/6.0;
                dp[i]+=1;
            }
            else dp[i]=dp[mp[i]];
        }
        printf("%.4f\n",dp[0]);
        for(int i=0;i<=n;i++) dp[i]=mp[i]=0;
    }
    return 0;
}

 

2、 zoj3551

题意:村子里有n-1个人和1个吸血鬼,保证他们有且只有两个相遇,如果吸血鬼碰上人则人有p的概率变成吸血鬼,其余相遇什么都不会发生,求花费天数的期望使n个全变成吸血鬼。

分析:dp[i]表示已经有i个吸血鬼,要变成n个吸血鬼花费的天数期望,此时产生一个吸血鬼的概率为p[i]=\frac{(n-i)*i*p}{C_n^2}

则dp[i]=dp[i+1]+1/p[i],dp[n]=0,要求dp[1]

Ac code:

#include <bits/stdc++.h>
using namespace std;
const int maxn=1e5+5;
double dp[maxn];
int main()
{
    int t,n;
    double p;
    scanf("%d",&t);
    while(t--){
        scanf("%d%lf",&n,&p);
        dp[n]=0;
        for(int i=n-1;i>=1;i--){
            double P=2.0*p*(n-i)*i/((double)n*(n-1));
            dp[i]=dp[i+1]+1.0/P;
        }
        printf("%.3f\n",dp[1]);
        for(int i=0;i<=n;i++) dp[i]=0;
    }
    return 0;
}

 3、zoj3329

题意:有三个骰子,分别有k1,k2,k3面,初始ans=0,如果三个骰子投出来点数为x1=a,x2=b,x3=c,则ans=0,否则则ans+=

x1+x2+x3,求ans>n所花费的次数期望。

分析:dp[i]表示已经有i分,到达>n分所花费的次数期望,显然dp[i>n]=0,要求dp[0],设得k分得概率为p[k],

则p[0]=1/(k1+k2+k3),dp[i]=\sum(p_k*dp[i+k])+p_0*dp[0]+1,由于dp[i]和都和dp[0]有关,可设

dp[i]=dp1[i]*dp[0]+dp2[i],代入上式得到dp1[i]=\sum(p_k*dp1[i+k])+p_0,且dp2[i]=\sum(p_k*dp2[i+k])+1

递推可求得dp1,dp2,最终要求的就是dp[0]=\frac{dp2[0]}{1-dp1[0]}

Ac code:

#include <bits/stdc++.h>
using namespace std;
const int maxn=1e3+5;
double dp1[maxn],dp2[maxn],p[20];
int main()
{
    int t;
    scanf("%d",&t);
    while(t--){
        int n,k1,k2,k3,a,b,c;
        scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&a,&b,&c);
        double p0=1.0/(k1*k2*k3);
        for(int i=1;i<=k1;i++)
            for(int j=1;j<=k2;j++)
               for(int k=1;k<=k3;k++)
                  if(i!=a||j!=b||k!=c)///这里注意,居然写出了i!=a&&j!=b&&k!=c
                     p[i+j+k]+=1.0/(k1*k2*k3);
        memset(dp1,0,sizeof dp1);
        memset(dp2,0,sizeof dp2);
        for(int i=n;i>=0;--i){
            for(int j=3;j<=k1+k2+k3;j++){
                dp1[i]+=dp1[i+j]*p[j];
                dp2[i]+=dp2[i+j]*p[j];
            }
            dp1[i]+=p0;
            dp2[i]+=1;
        }
        printf("%.15f\n",dp2[0]/(1-dp1[0]));
        for(int i=0;i<=k1+k2+k3;i++) p[i]=0;
    }
    return 0;
}

 

期望dp和概率dp是两种不同的动态规划方法。 期望dp是指通过计算每个状态的期望值来求解最终的期望。在期望dp中,我们通常定义dp\[i\]表示在第i个状态时的期望值,然后通过状态转移方程来更新dp数组,最终得到最终状态的期望值。期望dp通常用于求解期望问题,例如求解骰子的期望点数、求解抽奖的期望次数等。 概率dp是指通过计算每个状态的概率来求解最终的概率。在概率dp中,我们通常定义dp\[i\]表示在第i个状态时的概率,然后通过状态转移方程来更新dp数组,最终得到最终状态的概率。概率dp通常用于求解概率问题,例如求解抛硬币出现正面的概率、求解从一副牌中抽到红心的概率等。 总结来说,期望dp和概率dp的区别在于它们所计算的是不同的值,期望dp计算的是期望值,而概率dp计算的是概率值。 #### 引用[.reference_title] - *1* [概率/期望dp专题](https://blog.csdn.net/qq_34416123/article/details/126585094)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [【动态规划】数学期望/概率DP/期望DP详解](https://blog.csdn.net/weixin_45697774/article/details/104274160)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值