【C++】priority_queue的介绍和模拟实现

一. priority_queue的介绍

1. priority_queue的基本介绍

  1. 优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素总是它所包含的元素中最大的
  2. 其实现类似于堆,在堆中可以随时插入元素,并且只能检索最大堆元素(优先队列中位于顶部的元素)。
  3. 优先队列被实现为容器适配器,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的成员函数来访问其元素。元素从特定容器的“尾部”弹出,其称为优先队列的顶部。
  4. 底层容器可以是任何标准容器类模板,也可以是其他特定设计的容器类。容器应该可以通过随机访问迭代器访问,并支持以下操作:
    empty():检测容器是否为空
    size():返回容器中有效元素个数
    front():返回容器中第一个元素的引用
    push_back():在容器尾部插入元素
    pop_back():删除容器尾部元素
  5. 标准容器类vector和deque满足这些需求。默认情况下,如果没有为特定的priority_queue类实例化指定容器类,则使用vector。
  6. 需要支持随机访问迭代器,以便始终在内部保持堆结构。容器适配器通过在需要时自动调用算法函数make_heap、push_heap和pop_heap来自动完成此操作。

2. priority_queue的使用介绍

优先级队列默认使用vector作为其底层存储数据的容器,在vector上又使用了堆算法将vector中元素构造成堆的结构,因此priority_queue就是堆,所有需要用到堆的位置,都可以考虑使用priority_queue。注意:默认情况下priority_queue是大堆。

函数声明接口说明
priority_queue()/priority_queue(first,last)构造一个空的优先级队列
empty( )检测优先级队列是否为空,是返回true,否则返回false
top( )返回优先级队列中最大(最小元素),即堆顶元素
push(x)在优先级队列中插入元素x
pop()删除优先级队列中最大(最小)元素,即堆顶元素

1.默认情况下,priority_queue是大堆

#include <vector>
#include <queue>
#include <functional> // greater算法的头文件
void TestPriorityQueue()
{
 // 默认情况下,创建的是大堆,其底层按照小于号比较
 vector<int> v{3,2,7,6,0,4,1,9,8,5};
 priority_queue<int> q1;
 for (auto& e : v)
 q1.push(e);
 cout << q1.top() << endl;
 // 如果要创建小堆,将第三个模板参数换成greater比较方式
 priority_queue<int, vector<int>, greater<int>> q2(v.begin(), v.end());
 cout << q2.top() << endl;
}

2.如果在priority_queue中放自定义类型的数据,用户需要在自定义类型中提供> 或者< 的重载。

二. priority_queue的模拟实现

通过对priority_queue的底层结构就是堆,因此此处只需对对进行通用的封装即可:

#include<vector>
#include<functional>

// 仿函数/函数对象
//这个类的对象可以像函数一样使用
template<class T>
//为了与库less区别这里用大写Less
class Less
{
public:
	bool operator()(const T& x, const T& y)
	{
		return x < y;
	}
};

template<class T>
//为了与库less区别这里用大写G
class Greater
{
public:
	bool operator()(const T& x, const T& y)
	{
		return x > y;
	}
};

namespace wch
{


	template<class T, class Container = vector<T>, class Comapre = less<T>>
	class priority_queue
	{
	private:
		void AdjustDown(int parent)
		{
			Comapre com;

			// 找左右孩子大的那一个
			size_t child = parent * 2 + 1;
			while (child < _con.size())
			{
				if (child + 1 < _con.size() && com(_con[child], _con[child + 1]))
				{
					++child;
				}

				if (com(_con[parent], _con[child]))
				{
					swap(_con[child], _con[parent]);
					parent = child;
					child = parent * 2 + 1;
				}
				else
				{
					break;
				}
			}
		}

		// 向上调整与向下调整的区别:向上调整不需要找左右孩子大的那一个
		void AdjustUp(int child)
		{
			Comapre com;

			int parent = (child - 1) / 2;
			while (child > 0)
			{
				if (com(_con[parent], _con[child]))
				{
					swap(_con[child], _con[parent]);
					child = parent;
					parent = (child - 1) / 2;
				}
				else
				{
					break;
				}
			}
		}


	public:
		priority_queue()
		{}

		template<class InputIterator>
		priority_queue(InputIterator first, InputIterator last)
		{
			while (first != last)
			{
				_con.push_back(*first);
				++first;
			}

			// 建堆,_con.size() - 1 - 1为最后一个parent(非叶子节点)
			for (int i = (_con.size() - 1 - 1) / 2; i >= 0; i--)
			{
				AdjustDown(i);
			}
		}

		//交换第一个与最后一个,如何删除交换后的最后一个,从下标0开始向下调整
		void pop()
		{
			swap(_con[0], _con[_con.size() - 1]);
			_con.pop_back();

			AdjustDown(0);
		}

		//尾插,从尾插后的最后一个向上调整
		void push(const T& x)
		{
			_con.push_back(x);

			AdjustUp(_con.size() - 1);
		}

		const T& top()
		{
			return _con[0];
		}

		bool empty()
		{
			return _con.empty();
		}

		size_t size()
		{
			return _con.size();
		}
	private:
		Container _con;
	};

	void test_priority_queue1()
	{
		// 默认是大堆 -- less
		//priority_queue<int> pq;

		// 仿函数控制实现小堆
		priority_queue<int, vector<int>, Greater<int>> pq;

		pq.push(3);
		pq.push(5);
		pq.push(1);
		pq.push(4);

		while (!pq.empty())
		{
			cout << pq.top() << " ";
			pq.pop();
		}
		cout << endl;
	}

	class Date
	{
	public:
		Date(int year = 1900, int month = 1, int day = 1)
			: _year(year)
			, _month(month)
			, _day(day)
		{}

		bool operator<(const Date& d)const
		{
			return (_year < d._year) ||
				(_year == d._year && _month < d._month) ||
				(_year == d._year && _month == d._month && _day < d._day);
		}

		bool operator>(const Date& d)const
		{
			return (_year > d._year) ||
				(_year == d._year && _month > d._month) ||
				(_year == d._year && _month == d._month && _day > d._day);
		}

		friend ostream& operator<<(ostream& _cout, const Date& d);
	private:
		int _year;
		int _month;
		int _day;
	};

	ostream& operator<<(ostream& _cout, const Date& d)
	{
		_cout << d._year << "-" << d._month << "-" << d._day;
		return _cout;
	}

	struct LessPDate
	{
		bool operator()(const Date* p1, const Date* p2)
		{
			return *p1 < *p2;
		}
	};


	void test_priority_queue2()
	{
		// 仿函数控制实现小堆
	/*	priority_queue<Date, vector<Date>, less<Date>> pq;
		pq.push(Date(2023, 7, 20));
		pq.push(Date(2023, 6, 20));
		pq.push(Date(2023, 8, 20));

		while (!pq.empty())
		{
			cout << pq.top() << " ";
			pq.pop();
		}
		cout << endl;*/

		//由于每次运行代码时,同一地方的new每次开辟的空间不一样,即地址大小不可以做为比较两个元素的依据,
		// 这里控制上述仿函数LessPDate达到比较两个元素的目的
		priority_queue<Date*, vector<Date*>, LessPDate> pq;
		pq.push(new Date(2023, 7, 20));
		pq.push(new Date(2023, 6, 20));
		pq.push(new Date(2023, 8, 20));

		while (!pq.empty())
		{
			cout << *pq.top() << " ";
			pq.pop();
		}
		cout << endl;
	}
}

我的博客即将同步至腾讯云开发者社区,邀请大家一同入驻:https://cloud.tencent.com/developer/support-plan?invite_code=3d9ulczu9goe

评论 34
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值