排序算法

1、冒泡排序

/**
 * @Author zb
 * @Date 2018/8/13
 */
public class BubbleSort {

    /**
     * 冒泡排序
     * @param arr
     */
    public static void bubbleSort(int[] arr){
        if(arr == null || arr.length < 2){
            return ;
        }

        for (int e = arr.length - 1; e > 0; e--){
            for(int i = 0; i < e; i++){
                if(arr[i] > arr[i+1]){
                    swap(arr, i, i+1);
                }
            }
        }
    }

    public static void swap(int[] arr, int i, int j){
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }

    public static void main(String[] args) {
        int arr[] = {5,4,9,8,7,6,0,1,3,2};
        bubbleSort(arr);
        for(int i = 0; i < arr.length; i++){
            System.out.print(arr[i]+" ");
        }
    }

}
1.1第一种优化—外层循环优化

问题
有的冒泡经过第一轮的交换已经是有序的了,如:2 1 3 4。数据越多的时候越慢,非常不适合大数据的排序

解决办法
如果用一个flag来判断一下,当前数组是否已经有序,如果有序就退出循环,这样可以明显的提高冒泡排序的性能。

package bubbleSort;

import java.util.Arrays;

import org.junit.Test;

/**
 * 冒泡排序的性能分析和算法优化(外层循环优化)
 * @author dell
 *
 */
public class BubbeSort02 {

    @Test
    public void test1(){
        boolean flag = true;
        int[] arr = {2,1,3,4,5};
        int temp;
        for (int i = 0; i < arr.length-1; i++) {
            for (int j = 0; j < arr.length-1-i; j++) {
                if(arr[j]>arr[j+1]){
                    temp=arr[j];
                    arr[j]=arr[j+1];
                    arr[j+1]=temp;
                    flag=false;
                }
            }
            if(!flag){
                //没有发生交换则退出循环;
                break;
            }
        }
        System.out.println(Arrays.toString(arr));
    }
}
1.2第二种优化—内层循环优化
/**
     * 冒泡排序的性能分析和算法优化(内层循环优化)
     */
    @Test
    public void test2(){

        int[] arr = {22,1,10,5};

        //标记最后一次交换的位置


        for (int i = 0; i < arr.length-1; i++) {
            int flag = 0;
            int temp;
            for (int j = 0; j < arr.length-i-1; j++) {
                if(arr[j]>arr[j+1]){
                    temp=arr[j];
                    arr[j]=arr[j+1];
                    arr[j+1]=temp;
                    //当位置发生改变,flag的值就发生变化
                    flag=1;
                }
            }
            //判断标志位flag有没有发生变化,没有就直接结束内层循环
            if(flag==0){
                return;
            }
        }
        System.out.println(Arrays.toString(arr));
    }
}

2、插入排序

/**
 * @Author zb
 * @Date 2018/8/13
 */
public class InsertionSort {

    /**
     * 插入排序
     * @param arr
     */
    public static void insertionSort(int[] arr){
        if(arr == null || arr.length < 2){
            return ;
        }
        for(int i = 1; i < arr.length; i++){
            for(int j = i-1; j>= 0; j--){
                if(arr[j] > arr[j+1]){
                    swap(arr,j,j+1);
                }
            }
        }
    }

    public static void swap(int[] arr, int i, int j){
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }

    public static void main(String[] args) {
        int arr[] = {5,4,9,8,7,6,0,1,3,2};
        insertionSort(arr);
        for(int i = 0; i < arr.length; i++){
            System.out.print(arr[i]+" ");
        }
    }

}

3、选择排序

/**
 * @Author zb
 * @Date 2018/8/13
 */
public class SelectSort {

    /**
     * 选择排序
     * @param arr
     */
    public static void selectSort(int[] arr){
        if(arr == null || arr.length < 2){
            return ;
        }
        for(int i = 0; i < arr.length-1; i++){
            int minIndex = i;
            //找出每次遍历的最小值
            for(int j = i + 1; j < arr.length; j++){
                minIndex = arr[j] < arr[minIndex] ? j : minIndex;
            }
            swap(arr,i,minIndex);
        }
    }

    public static void swap(int[] arr, int i, int j){
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }

    public static void main(String[] args) {
        int arr[] = {5,4,9,8,7,6,0,1,3,2};
        selectSort(arr);
        for(int i = 0; i < arr.length; i++){
            System.out.print(arr[i]+" ");
        }
    }

}

4、堆排序

/**
 * @Author zb
 * @Date 2018/8/13
 */
public class HeapSort {

    /**
     * 堆排序
     * @param arr
     */
    public static void heapSort(int[] arr){

        if(arr == null || arr.length < 2){
            return ;
        }

        //从0—i依次建立大根堆
        for(int i = 0; i < arr.length; i++){
            heapInsert(arr, i);
        }
        int heapSize = arr.length;

        //最后一个位置的数跟0位置上的数交换(大根堆中0位置的数最大)
        //--heapsize:下标从0开始,所以要减1
        swap(arr, 0, --heapSize);

        //排序
        while (heapSize > 0){
            //调整大根堆
            heapify(arr, 0, heapSize);
            //再和0位置上的数交换
            swap(arr, 0, --heapSize);
        }

    }

    /**
     * 建立大根堆:已知结点为i,则它的父结点为(i-1)/2,它的左孩子结点为2*i+1,右孩子为:2*i+2
     * @param arr
     * @param index
     */
    public static void heapInsert(int[] arr, int index){

        //如果当前结点的值比父结点的值大,则交换
        while(arr[index] > arr[(index-1)/2]){
            swap(arr, index, (index - 1)/2);
            //index被赋值为父节点的下标,继续和上面的父节点比较
            index = (index - 1)/2;
        }

    }

    /**
     * 调整大根堆
     * @param arr
     * @param index
     * @param heapSize 堆的大小,标记是否越界,其值小于等于数组的大小
     */
    public static void heapify(int[] arr, int index, int heapSize){
        //当前结点的左孩子的下标
        int left = index * 2 +1;
        while(left < heapSize){
            //left+1:当前结点的右孩子的下标
            //largest:表示左右孩子中较大者的下标
            int largest = left + 1 < heapSize && arr[left + 1] > arr[left] ? left + 1 : left;

            //和当前结点比较,哪个更大
            largest = arr[largest] > arr[index] ? largest : index;

            //当前结点比左右孩子的值都大,不用调整
            if(largest == index){
                break;
            }

            swap(arr, largest, index);
            //继续调整,把较小值向下沉
            index = largest;
            left = index * 2 + 1;

        }
    }

    public static void swap(int[] arr, int i, int j){
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }

    public static void main(String[] args) {
        int arr[] = {5,4,9,8,7,6,0,1,3,2,};
        heapSort(arr);
        for(int i = 0; i < arr.length; i++){
            System.out.print(arr[i]+" ");
        }
    }

}

5、并归排序

public static void mergeSort(int[] arr){
        if(arr == null || arr.length < 2){
            return;
        }
        mergeProcess(arr, 0, arr.length - 1);
    }

//并归排序过程
public static void mergeProcess(int[] arr, int left, int right){
    //只有一个数,已经排好了
    if(left == right){
        return ;
    }
    //left和right的中点位置。相当于mid = (left + right) / 2
    int mid = left + ((right - left) >> 1);
    //递归排好左边
    mergeProcess(arr, left, mid);
    //递归排好右边
    mergeProcess(arr, mid + 1, right);
    //整体排好
    merge(arr, left, mid, right);
}

//把已经排好序的左右两边排好序
public static void merge(int[] arr, int left, int mid, int right){
    //辅助数组,left到rihgt上有多少个数。
    int[] help = new int[right - left + 1];
    int i = 0;
    int p1 = left;
    int p2 = mid + 1;
    //定义两个下标,分别指向左右两边的最左侧
    //谁小,填谁
    while(p1 <= mid && p2 <= right){
        help[i++] = arr[p1] < arr[p2] ? arr[p1++] : arr[p2++];
    }
    //左右两部分中,必有且只有一个越界
    while(p1 <= mid){
        help[i++] = arr[p1++];
    }
    while (p2 <= right){
        help[i++] = arr[p2++];
    }
    //把help中排好的序复制到arr中
    for(i = 0; i < help.length; i++){
        arr[left + i] = help[i];
    }
}

public static void main(String[] args) {
    int[] array = {3,4,6,1,2,3};
    mergeSort(array);
    for(int i = 0; i < array.length; i++){
        System.out.print(array[i] + " ");
    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值