最近自己基本疏通了视觉检测跟踪识别综合系统的整个思路,系统如下:视觉数据预处理—>背景建模—>特征提取—>分类器—>预测跟踪滤波器—>目标综合信息识别
一、视觉数据预处理:
做视频处理前,如果前期视频质量太差,后期再好的处理算法也无济于事,因此需要对要处理的视频进行预处理。
预处理流程如下:
1. 用视频质量检测系统对视频质量进行前期评估
2. 对较差的部分进行相应的调整。如:
2.1 手动对摄像头角度进行调整。
2.2 程序实现清除噪声:如雪花、大雾等
本模块,输入实际视频,输出处理后理想源视频。
二、由于现阶段没有一个建模的算法能在大部分场景进行通用,所以在研究出先进算法之前,我们可以对现有的成熟的实用的背景建模算法进行综合使用。
软切换:通过对每个算法进行求加权和。
硬切换: 把先验知识和预处理阶段的结果综合考虑,使用效果最好的算法。
注意: 本阶段,要把目标全部提取。本着“宁多无漏”原则,一定不能把目标漏掉。
本模块,输入理想源视频,输出背景图和前景图及目标信息向量。
三、特征提取阶段
目标特征主要以下几种:
3.1颜色特征
使用颜色直方图、颜色距(一阶矩,二阶矩,三阶矩)、颜色一致性矢量(ccv)、颜色相关图等。
优点计算量小,抗旋转等,缺点,不抗遮挡,噪声影响大。
3.2纹理特征
结构法:从纹理图像的结构角度分析纹理基元的形状排列等。面积,周长,偏心度,方向,延伸度。
统计法:灰度直方图的矩,自相关函数,灰度共生矩阵分析,边缘频率和基元行程长度等。
频谱法:将空间域纹理变换到频域中,FT,小波变换模型法:Markov随机场模型,自回归模型,金字塔小波分析和分形。
优点,特征提取准确。缺点,算法计算量大,对视频的分辨率要求较高。
3.3形状几何特征
不变距、Freeman链码
几何参数法:外接矩面积、周长,圆度,偏心率,主轴方向,代数不变矩,Hausdorff距离。
3.4 其他特征:空间特征(空间关系,方向关系,结构关系);字符特征(目标中含有固定字符,如车牌,标志等)等。
常见的特征模型:Gabor模型、DCT模型、SIFT模型、SUPF模型、HOG模型等等
本模块,输入前景区域目标源视频块,输出特征向量或矩阵(保留空间相关性)。
四、分类器
由于背景建模阶段,提取的前景存在很多噪声。通过分类器阶段,滤除部分噪声。
常见分类器,贝叶斯分类器,boosting分类,svm,haar分类等。
在这里,需要指出的是,不同的分类器,他们有各自擅长的领域。如haar分类器对人脸识别比较擅长等。
本模块,输入目标的特征+源图像+前景图像,输出精确后的目标位置运动信息向量。
五、预测跟踪滤波器
由于分类器的相似度阈值,在经过分类器阶段还会存在噪声,所以就需要跟踪滤波器对每个目标精确到唯一。
常见的跟踪滤波器:Kalman滤波器、粒子滤波器、meanshift等。
本模块,输入比较准确的目标位置运动信息的量测数据,输出每个目标位置运动信息的唯一标示。
六、目标综合信息识别
对目标进行跟踪的真正目的是对目标综合信息进行识别,从而分析目标的行为(检测其速度、是否越线等),识别目标的外观信息,建立目标的综合数据库。