Bsgs, Exbsgs

B s g s \tt Bsgs Bsgs 例题

如果您已经会 b s g s bsgs bsgs 不妨来看看文末的注意。

a x ≡ b ( m o d p ) a^x \equiv b \pmod p axb(modp) 的一个最小正整数解。 p \tt p p 是素数。

考虑进行分块,设 m = ⌊ p ⌋ m = \lfloor\sqrt p \rfloor m=p ,那么让 x x x 进行一下拆分得到。

x = i × m − j x = i\times m - j x=i×mj

之后对于两部分分别进行计算,放到哈希表中查询即可。

具体来说:

我们先将 b × a j b \times a^j b×aj 存到 H a s h \tt Hash Hash 表中,然后去枚举每一个 ( a m ) i (a^{m})^i (am)i 去暴力匹配一下即可。

注意:

枚举 i i i 要从 0 0 0 开始到 i i i,为了计算是 0 0 0 的情况。

特判 m = 1 , b = 1 m = 1, b = 1 m=1,b=1 直接返回 0 0 0 即可。

int ksm(int x,int mi,int p) {
    int res(1);
    if(mi == 0) return res % p;
    while(mi) {
        if(mi & 1) res = res * x % p;
        mi >>= 1;
        x = x * x % p;
    }
    return res;
}
int bsgs(int a,int b,int mod) {
    b %= mod, a %= mod;
    map<int, int> mp; mp.clear();
    int m = sqrt(mod) + 1;
    for(int now(b), i = 0; i < m; ++ i, now = now * a % mod)
        mp[now] = i;
    a = ksm(a, m, mod);
    if(!a) return b == 0 ? 1 : -1;
//    puts("ZZZ");
    for(int now(a), i = 1; i <= m; ++ i, now = now * a % mod) {
//        now = ksm(a, i, mod);
        if(!mp.count(now)) continue;
        int j = mp[now];
        if(i * m - j >= 0) return i * m - j;
    }
    return -1;
}

e x b s g s \tt exbsgs exbsgs 例题

a x ≡ b ( m o d p ) a^x \equiv b \pmod p axb(modp) 这里 p p p 不一定是素数。

我们先将 b , p b, p b,p 变成互质,如果说除以了 c t ct ct 次公约数,公约数乘积为 g d gd gd

那么可以得到 a x − c t × a c t g d ≡ b g d ( m o d p ) a^{x - ct} \times \frac{a^{ct}}{gd} \equiv \frac{b}{gd} \pmod p axct×gdactgdb(modp)

之后为了方便将 a c t g d \frac{a^{ct}}{gd} gdact 放到右边,之后左边本质上就可以用 b s g s bsgs bsgs 了。

所以我们需要后面的这个是和 p p p 互质的。

int exgcd(int a,int b,int &x,int &y) {
    if(!b) return x = 1, y = 0, a;
    int z = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return z;
}

int ksm(int x,int mi,int mod) {
    int res(1);
    if(mi == 0) return res % mod;
    while(mi) {
        if(mi & 1) res = res * x % mod;
        mi >>= 1;
        x = x * x % mod;
    }
    return res;
}

int exbsgs(int a,int b,int mod) {
    a %= mod, b %= mod;
    if(b == 1 || mod == 1) return 0;
    map<int ,int> mp; mp.clear();
    int ct(0), x, y, ax(1);
    for(int gd; gd = exgcd(a, mod, x, y), gd != 1; ) {
        if(b % gd) return -1;
        b /= gd, mod /= gd;
        ++ ct;
        ax = ax * (a / gd) % mod;
        if(ax == b) return ct;
    }
    exgcd(ax, mod, x, y);
    int inv = (x % mod + mod) % mod;
    b = b * inv % mod;
    int m = sqrt(mod) + 1;
    for(int i = 0, now(b); i < m; ++ i, now = now * a % mod)
        mp[now] = i;
    a = ksm(a, m, mod);
    if(!a) return (b == 0) ? 1 + ct : -1;
    for(int i = 0, now(1); i <= m; ++ i, now = now * a % mod) {
        if(!mp.count(now)) continue;
        int j = mp[now];
        if(i * m - j >= 0) return i * m - j + ct;
    }
    return -1;
}

hdu2815 Mod Tree \text{hdu2815 Mod Tree} hdu2815 Mod Tree

这里需要注意一下 b ≥ m o d b \ge mod bmod 直接无解。

#include <bits/stdc++.h>
using namespace std;

//#define Fread
//#define Getmod

#ifdef Fread
char buf[1 << 21], *iS, *iT;
#define gc() (iS == iT ? (iT = (iS = buf) + fread (buf, 1, 1 << 21, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++)
#define getchar gc
#endif // Fread

template <typename T>
void r1(T &x) {
	x = 0;
	char c(getchar());
	int f(1);
	for(; c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
	for(; '0' <= c && c <= '9';c = getchar()) x = (x * 10) + (c ^ 48);
	x *= f;
}

#ifdef Getmod
const int mod  = 1e9 + 7;
template <int mod>
struct typemod {
    int z;
    typemod(int a = 0) : z(a) {}
    inline int inc(int a,int b) const {return a += b - mod, a + ((a >> 31) & mod);}
    inline int dec(int a,int b) const {return a -= b, a + ((a >> 31) & mod);}
    inline int mul(int a,int b) const {return 1ll * a * b % mod;}
    typemod<mod> operator + (const typemod<mod> &x) const {return typemod(inc(z, x.z));}
    typemod<mod> operator - (const typemod<mod> &x) const {return typemod(dec(z, x.z));}
    typemod<mod> operator * (const typemod<mod> &x) const {return typemod(mul(z, x.z));}
    typemod<mod>& operator += (const typemod<mod> &x) {*this = *this + x; return *this;}
    typemod<mod>& operator -= (const typemod<mod> &x) {*this = *this - x; return *this;}
    typemod<mod>& operator *= (const typemod<mod> &x) {*this = *this * x; return *this;}
    int operator == (const typemod<mod> &x) const {return x.z == z;}
    int operator != (const typemod<mod> &x) const {return x.z != z;}
};
typedef typemod<mod> Tm;
#endif

template <typename T,typename... Args> inline void r1(T& t, Args&... args) {
    r1(t);  r1(args...);
}

#define int long long
const int maxn = 2e5 + 5;
const int maxm = maxn << 1;

int ksm(int x,int mi,int mod) {
	int res(1);
	if(mi == 1) return 1 % mod;
	while(mi) {
		if(mi & 1) res = res * x % mod;
		mi >>= 1;
		x = x * x % mod;
	}
	return res;
}

int exgcd(int a,int b,int &x,int &y) {
	if(!b) return x = 1, y = 0, a;
	int d = exgcd(b, a % b, y, x);
	y -= a / b * x;
	return d;
}

int exbsgs(int a,int b,int mod) {
	static map<int, int> mp; mp.clear();
	a %=  mod, b %= mod;
	if(b == 1 || mod == 1) return 0; // case 1
	int ax(1), ct(0), x, y;
	for(int gd; gd = exgcd(a, mod, x, y), gd != 1; ) {
		if(b % gd) return -1; // case 2
		b /= gd, mod /= gd;
		++ ct;
		ax = ax * (a / gd) % mod;
		if(ax == b) return ct;
	}
	exgcd(ax, mod, x, y), void(); // case 3
	int inv = (x % mod + mod) % mod;
	b = b * inv % mod;
	int m = sqrt(mod) + 1;
	for(int i = 0, now(b); i < m; ++ i, now = now * a % mod) {
		mp[now] = i;
	}
	a = ksm(a, m, mod);
	if(!a) return b == 0 ? 1 + ct : -1;//case 4
	for(int i = 0, now(1); i <= m; ++ i, now = now * a % mod) {
		if(!mp.count(now)) continue;
		int j = mp[now];
		if(i * m - j >= 0) return i * m - j + ct;
	}
	return -1;
}

signed main() {
//    freopen("S.in", "r", stdin);
//    freopen("S.out", "w", stdout);
    int a, b, p;
    while(scanf("%lld%lld%lld", &a, &p, &b) != EOF) {
		if(b >= p) {
			puts("Orz,I can’t find D!");
			continue;
		}
		int ans = exbsgs(a, b, p);
		if(ans == -1) puts("Orz,I can’t find D!");
		else printf("%lld\n", ans);
    }
	return 0;
}

注意:

  • 特判 b = 1 , m o d = 1 b = 1, mod = 1 b=1,mod=1 的情况。

  • 计算除以 gcd ⁡ \gcd gcd 的次数的时候,如果已经有 a c t g d = b g d \frac{a^{ct}}{gd} = \frac{b}{gd} gdact=gdb 的情况直接返回即可。

  • 计算逆元的时候,不要将 a a a 当做 a x ax ax

  • 特判 a = 0 a = 0 a=0,如果 b ≠ 0 b \ne 0 b=0 就不合法。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值