pytorch 核心方法
Tensors
- torch.is_tensor(obj)
- torch.is_storage(obj)
- torch.numel(input)->int <=> a.numel()
- torch.eye(n, m=None, out=None)
- torch.from_numpy(ndarray) → Tensor
- torch.linspace(start, end, steps=100, out=None) → Tensor
- torch.logspace(start, end, steps=100, out=None) → Tensor
- torch.ones(*sizes, out=None) → Tensor
- torch.rand(*sizes, out=None)→Tensor 区间[0,1)
- torch.randn(*sizes, out=None) → Tensor (正态分布)
- torch.randperm(n, out=None) → LongTensor (0 到n -1 的随机整数排列。上边界(不包含))
- torch.zeros(*sizes, out=None) → Tensor
- torch.cat(inputs, dimension=0) → Tensor
- torch.cat(inputs, dimension=0) → Tensor
- torch.chunk(tensor, chunks, dim=0) — 在给定维度(轴)上将输入张量进行分块儿。
- torch.tril() torch.triu() 上三角,下三角
- Tensor.masked_fill(mask, default_value) mask是bool类型 default_value 为默认值
- torch.bitcount() 获取个数 其中有一个as_type方法,返回值类型