Pytorch 核心方法

pytorch 核心方法

Tensors

  • torch.is_tensor(obj)
  • torch.is_storage(obj)
  • torch.numel(input)->int <=> a.numel()
  • torch.eye(n, m=None, out=None)
  • torch.from_numpy(ndarray) → Tensor
  • torch.linspace(start, end, steps=100, out=None) → Tensor
  • torch.logspace(start, end, steps=100, out=None) → Tensor
  • torch.ones(*sizes, out=None) → Tensor
  • torch.rand(*sizes, out=None)→Tensor 区间[0,1)
  • torch.randn(*sizes, out=None) → Tensor (正态分布)
  • torch.randperm(n, out=None) → LongTensor (0 到n -1 的随机整数排列。上边界(不包含))
  • torch.zeros(*sizes, out=None) → Tensor
  • torch.cat(inputs, dimension=0) → Tensor
  • torch.cat(inputs, dimension=0) → Tensor
  • torch.chunk(tensor, chunks, dim=0) — 在给定维度(轴)上将输入张量进行分块儿。
  • torch.tril() torch.triu() 上三角,下三角
  • Tensor.masked_fill(mask, default_value) mask是bool类型 default_value 为默认值
  • torch.bitcount() 获取个数 其中有一个as_type方法,返回值类型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值