python毕设菜谱推荐系统的设计与实现程序+论文

本系统(程序+源码+数据库+调试部署+开发环境)论文文档1万字以上,文末可获取,系统界面在最后面。

系统程序文件列表

开题报告内容

一、选题背景

关于菜谱推荐系统的研究,现有研究主要以通用的推荐算法为主,专门针对python实现菜谱推荐系统的研究较少。在国内外,虽然有一些美食推荐相关的研究成果,但多集中在大型餐饮平台的商业推荐,或者是简单的基于单一因素(如食材、菜系)的推荐。目前存在的争论焦点在于如何更精准地根据用户的个性化需求(如口味、健康需求、烹饪时间等)进行推荐。本选题将以python为工具构建菜谱推荐系统为研究情景,重点分析和研究如何整合用户的多维度需求并准确推荐菜谱的问题,以期探寻更精准的菜谱推荐机制,提出优化的推荐策略,为后续更加深入的研究提供基础。随着人们生活水平的提高,对于饮食的要求不再仅仅满足于饱腹,而是更加注重个性化、营养健康等多方面因素。研究菜谱推荐系统能够更好地满足用户在饮食方面的多样化需求,是有价值的研究方向。

二、研究意义

本选题针对菜谱推荐系统等问题的研究具有重要的理论意义和现实意义。

  • 理论意义:本选题研究将对推荐系统相关理论基础进行深入的剖析,尤其是在菜谱推荐这个特定领域,有助于丰富和完善推荐系统的理论体系,例如研究如何更好地结合用户偏好、菜谱特性等因素构建更有效的推荐模型。
  • 现实意义:能够为用户提供更加个性化、精准的菜谱推荐服务。对于忙碌的现代人来说,可以快速找到符合自己口味、健康需求以及食材储备等情况的菜谱;对于美食爱好者,可以发现更多符合自己兴趣的特色菜谱;同时也有助于推广各地美食文化,提高美食资源的利用效率。

三、研究方法

本研究将采用多种研究方法相结合的方式:

  • 文献分析法:通过查阅大量关于推荐系统、菜谱数据处理、python在推荐系统中的应用等方面的文献,了解前人的研究成果和存在的问题,为本系统的设计提供理论支持和参考思路[1] 。
  • 软件工程方法:按照软件工程的规范流程进行系统的设计与实现,包括需求分析、系统设计、编码实现、测试与维护等阶段,确保系统的可靠性和可维护性。
  • 问卷调查法:设计问卷对用户的需求进行调查,例如用户的饮食偏好、对菜谱推荐的期望等,以便更好地了解用户需求,为系统功能的设计提供依据。

四、研究方案

  • 可能遇到的困难和问题
    • 数据获取与处理:菜谱数据的来源可能较为分散,且数据的格式可能不统一,这对数据的获取和清洗工作带来困难。另外,如何从海量菜谱数据中提取有效特征也是一个挑战。
    • 推荐算法优化:要实现精准推荐,需要不断优化推荐算法。但是在算法优化过程中,可能会面临算法复杂度与推荐效果之间的平衡问题,以及如何根据用户反馈及时调整算法的问题。
  • 解决的初步设想
    • 数据获取与处理:通过多渠道收集菜谱数据,如美食网站、美食APP等,并编写专门的数据清洗程序来统一数据格式。采用数据挖掘技术提取有效特征,例如利用python中的数据处理库(如pandas、numpy)进行数据预处理和特征提取。
    • 推荐算法优化:参考已有的推荐算法,如基于内容的推荐算法、协同过滤推荐算法等,通过实验对比不同算法的优缺点,结合本系统的需求进行改进。建立用户反馈机制,根据用户的点击、评价等反馈信息,采用机器学习的方法对推荐算法进行实时调整。

五、研究内容

  • 用户模块
    • 用户注册与登录功能,确保用户信息的安全存储和管理。
    • 用户信息管理,包括用户基本信息(如年龄、性别、地区等)以及个性化偏好(如口味偏好、饮食禁忌、烹饪技能水平等)的设置与修改。
    • 用户历史记录的管理,例如用户浏览过的菜谱、收藏的菜谱等,以便根据用户历史行为进行个性化推荐。
  • 美食分类模块
    • 构建合理的美食分类体系,如按照菜系(中式、西式、日式等)、食材种类(肉类、蔬菜类、海鲜类等)、烹饪方式(煎、炒、烹、炸等)等进行分类。
    • 实现美食分类的动态管理,能够方便地添加、删除或修改分类信息。
  • 菜谱模块
    • 菜谱数据的采集与存储,从多个来源收集菜谱数据,并存储到数据库中,包括菜谱的名称、食材、步骤、图片、营养成分等信息。
    • 菜谱的搜索与展示功能,用户可以根据关键词(如菜谱名称、食材等)搜索菜谱,并以清晰、美观的方式展示菜谱的详细信息。
    • 基于用户需求的菜谱推荐功能,综合考虑用户的个性化偏好、历史记录以及美食分类等因素,为用户推荐符合其需求的菜谱。

六、拟解决的主要问题

  • 精准推荐问题:通过对用户多维度信息(如个人偏好、历史行为等)的分析,结合菜谱的各种特征(食材、烹饪方式、口味等),建立精准的推荐模型,提高菜谱推荐的准确性。
  • 数据管理问题:有效管理菜谱数据,包括数据的采集、存储、更新等,确保数据的完整性和一致性,同时提高数据的查询和调用效率。

七、预期成果

  • 系统成果:成功设计并实现一个基于python的菜谱推荐系统,该系统具有稳定的运行性能,能够为用户提供个性化、精准的菜谱推荐服务。
  • 文档成果:撰写完整的毕业设计文档,包括需求分析报告、系统设计文档、测试报告等,详细记录系统的设计思路、实现过程以及测试结果。

进度安排:

2023年12月: 查看相关资料、技术,准备技术文档,做好需求分析;下发任务书;

2024年01月: 撰写开题报告,并制定软件开发计划,初步设计软件功能架构;

2024年02月: 根据需求分析,进行详细设计;初步设计软件部分功能,完成开题报告;

2024年03月: 对软件前,后台系统功能进行开发,完成软件各个功能模块,撰写论文初稿;

2024年04月:进行系统测试、论文初稿完成、和指导教师沟通,上交初稿,查重,中期检查;

2024年05月:修改论文,完成定稿,软件功能全部实现、测试、界面美化,上交论文资料,参加答辩。

参考文献:

[1] Hamed Tahmooresi, A. Heydarnoori et al. "An Analysis of Python's Topics, Trends, and Technologies Through Mining Stack Overflow Discussions." arXiv.org (2020).

[2] 韩文煜. "基于python数据分析技术的数据整理与分析研究"[J]. 科技创新与应用, 2020, No.296(04): 157-158.

[3] Sebastian Bassi. "A Primer on Python for Life Science Researchers." PLoS Comput. Biol. (2007).

[4] Roseline Bilina and S. Lawford. "Python for Unified Research in Econometrics and Statistics." (2009). 558 591.

[5] 程俊英. "基于Python语言的数据分析处理研究"[J]. 电子技术与软件工程, 2022, No.233(15): 236-239.

[6] 曾浩. "基于Python的Web开发框架研究"[J]. 广西轻工业, 2011, 27(08): 124-125+176.

[7] Fabian Pedregosa, G. Varoquaux et al. "Scikit-learn: Machine Learning in Python." Journal of machine learning research(2011).

[8] 陈佳佳, 邱晓荣, 熊宇昊, 段莉华. "基于Python的人脸识别技术研究"[J]. 电脑知识与技术, 2023, 19 (08): 34-36+39.

[9] 阿不都艾尼·阿不都肉素力. "Python的计算机软件应用技术分析"[J]. 电脑编程技巧与维护, 2021, No.435(09): 29-30+58.

[10] 张楠. "Python语言及其应用领域研究"[J]. 科技创新导报, 2019, 16(17): 122-123.

[11] 王雄伟, 侯海珍. "大数据专业Python程序设计课程建设探究"[J]. 知识窗(教师版), 2023, (10): 117-119.

[12] 朱向阳. "高中信息技术python项目式教学路径分析"[J]. 高考, 2023, (24): 126-128.

以上是开题是根据本选题撰写,是项目程序开发之前开题报告内容,后期程序可能存在大改动。最终成品以下面运行环境+技术栈+界面为准,可以酌情参考使用开题的内容。要源码请在文末进行获取!!

系统技术栈:

前端Vue.jsHTMLCSSJavaScript后端技术栈

后端:Python 3.7.7Django MySQL5.7

开发工具PyCharm社区版、Navicat 11以上版本

系统开发流程

• 使用HTML、CSS和JavaScript结合Vue.js构建前端界面。

• 使用Python语言结合Django框架开发RESTful API。

• 利用MySQL数据库进行数据存储和查询。

• 通过PyCharm IDE进行代码编写、调试和项目管理。

毕设使用者指南

系统概览

本系统是一个基于现代Web技术构建的应用程序,旨在为用户提供一个交互性强、响应快速的用户体验。系统前端采用Vue.js框架,后端使用Python语言结合Django框架,并以MySQL作为数据存储解决方案。

前端使用指南

1.界面导航

  • 主页:展示系统的主要功能和概览信息。
  • 功能页面:根据需要,用户可以访问不同的功能页面,如用户管理、数据分析等。

2. 交互操作

  • 使用HTMLCSS构建的界面元素,如按钮、链接、表单等,用户可以点击或输入信息进行操作。
  • 利用JavaScriptVue.js实现的动态功能,如实时数据更新、表单验证等,增强用户交互体验。

后端服务指南

1. API使用

  • 系统后端提供RESTful API,用户可以通过HTTP请求与系统进行数据交互。
  • 常见的API操作包括GET(获取数据)、POST(提交数据)、PUT(更新数据)和DELETE(删除数据)。

2. 数据管理

  • 利用MySQL数据库,系统能够安全、高效地存储和管理用户数据。
  • 用户可以通过系统界面或API访问数据库中的数据。

程序界面:

源码、数据库获取↓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值