[HOT 100] 2646. 最小化旅行的价格总和

1. 题目链接


2646. 最小化旅行的价格总和 - 力扣(LeetCode)


2. 题目描述


现有一棵无向、无根的树,树中有 n 个节点,按从 0n - 1 编号。给你一个整数 n 和一个长度为 n - 1 的二维整数数组 edges ,其中 edges[i] = [ai, bi] 表示树中节点 aibi 之间存在一条边。

每个节点都关联一个价格。给你一个整数数组 price ,其中 price[i] 是第 i 个节点的价格。

给定路径的 价格总和 是该路径上所有节点的价格之和。

另给你一个二维整数数组 trips ,其中 trips[i] = [starti, endi] 表示您从节点 starti 开始第 i 次旅行,并通过任何你喜欢的路径前往节点 endi

在执行第一次旅行之前,你可以选择一些 非相邻节点 并将价格减半。

返回执行所有旅行的最小价格总和。


3. 题目示例


示例 1 :

输入:n = 4, edges = [[0,1],[1,2],[1,3]], price = [2,2,10,6], trips = [[0,3],[2,1],[2,3]]
输出:23
解释:
上图表示将节点 2 视为根之后的树结构。第一个图表示初始树,第二个图表示选择节点 0 、2 和 3 并使其价格减半后的树。
第 1 次旅行,选择路径 [0,1,3] 。路径的价格总和为 1 + 2 + 3 = 6 。
第 2 次旅行,选择路径 [2,1] 。路径的价格总和为 2 + 5 = 7 。
第 3 次旅行,选择路径 [2,1,3] 。路径的价格总和为 5 + 2 + 3 = 10 。
所有旅行的价格总和为 6 + 7 + 10 = 23 。可以证明,23 是可以实现的最小答案。

示例 2 :

输入:n = 2, edges = [[0,1]], price = [2,2], trips = [[0,0]]
输出:1
解释:
上图表示将节点 0 视为根之后的树结构。第一个图表示初始树,第二个图表示选择节点 0 并使其价格减半后的树。 
第 1 次旅行,选择路径 [0] 。路径的价格总和为 1 。 
所有旅行的价格总和为 1 。可以证明,1 是可以实现的最小答案。

4. 解题思路


  1. 问题理解
    • 给定一棵树,每个节点有一个价格。
    • 多个旅行路径(trips),每个路径从起点到终点。
    • 可以选择将某些节点的价格减半,但相邻节点不能同时减半。
    • 目标是最小化所有旅行路径的总价格。
  2. 关键步骤
    • 统计节点访问次数:通过DFS遍历每个trip的路径,统计每个节点被访问的次数。
    • 动态规划计算最小总价格:类似"打家劫舍III"问题,对每个节点有两种选择(减半或不变),需要满足相邻节点不能同时减半的条件。
  3. DFS统计访问次数
    • 对每个trip,从起点DFS到终点,标记路径上的所有节点。
    • 使用cnt数组记录每个节点被访问的总次数。
  4. 动态规划设计
    • 状态定义dp(x)返回一个数组[notHalve, halve],表示节点x不减半或减半时的最小总价格。
    • 状态转移
      • 如果x不减半,子节点可以减半或不变,取最小值。
      • 如果x减半,子节点必须不减半。
    • 初始化:叶子节点的notHalvehalve直接计算。

5. 题解代码


class Solution {
    private List<Integer>[] g;  // 邻接表存储树结构
    private int[] price, cnt;    // price: 节点价格数组, cnt: 节点访问次数数组
    private int end;             // 当前trip的目标节点

    public int minimumTotalPrice(int n, int[][] edges, int[] price, int[][] trips) {
        // 初始化邻接表
        g = new ArrayList[n];
        Arrays.setAll(g, e -> new ArrayList<>());
        for (int[] e : edges) {
            int x = e[0], y = e[1];
            g[x].add(y);
            g[y].add(x);
        }

        // 初始化节点访问次数数组
        cnt = new int[n];
        // 处理每个trip,统计路径上的节点访问次数
        for (int[] t : trips) {
            end = t[1];
            dfs(t[0], -1);
        }

        this.price = price;
        // 动态规划计算最小总价格
        int[] res = dp(0, -1);
        return Math.min(res[0], res[1]);
    }

    // DFS统计trip路径上的节点访问次数
    private boolean dfs(int x, int fa) {
        if (x == end) {
            cnt[x]++;
            return true; // 找到目标节点
        }
        for (int y : g[x]) {
            if (y != fa && dfs(y, x)) {
                cnt[x]++; // 当前节点在路径上
                return true;
            }
        }
        return false; // 未找到目标节点
    }

    // 动态规划计算最小总价格(类似打家劫舍III)
    private int[] dp(int x, int fa) {
        int notHalve = price[x] * cnt[x]; // 当前节点价格不减半的总价格
        int halve = notHalve / 2;         // 当前节点价格减半的总价格
        for (int y : g[x]) {
            if (y != fa) {
                int[] res = dp(y, x); // 子节点的计算结果
                notHalve += Math.min(res[0], res[1]); // 当前节点不减半,子节点可以减半或不变
                halve += res[0]; // 当前节点减半,子节点必须不变
            }
        }
        return new int[]{notHalve, halve};
    }
}


6. 复杂度分析


时间复杂度

  • DFS统计访问次数:O(n * m),其中n是节点数,m是trip数量(每个trip最坏O(n))。
  • 动态规划:O(n),每个节点处理一次。
  • 总时间复杂度:O(n * m + n) = O(n * m)。

空间复杂度

  • 邻接表:O(n)。
  • cnt数组:O(n)。
  • 递归调用栈:最坏O(n)。
  • 总空间复杂度:O(n)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值