本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。
系统程序文件列表
开题报告内容
研究背景
随着全球气候变化的日益严峻,建筑行业的碳排放问题逐渐成为社会各界关注的焦点。作为能源消耗和温室气体排放的主要领域之一,建筑行业在推动绿色、低碳发展中扮演着至关重要的角色。当前,如何准确计算并有效减少建筑全生命周期的碳排放,已成为实现可持续发展目标的关键。在此背景下,本研究旨在利用现代信息技术,结合Django框架和Vue前端技术,开发一套建筑碳排放计算系统,以期为建筑行业提供科学的碳排放管理工具,助力其实现节能减排和绿色发展。
研究意义
本研究具有重要的理论意义和实践价值。在理论层面,通过深入研究建筑碳排放的计算方法和模型,可以丰富和完善相关领域的理论体系,为后续的学术研究提供新的思路和方法。在实践层面,该系统能够为用户提供便捷的建筑碳排放计算服务,帮助用户全面了解建筑各阶段的碳排放情况,进而采取针对性的减排措施。此外,该系统还能促进建筑行业的绿色转型,推动国家“双碳”目标的实现。
研究目的
本研究的主要目的是开发一套基于Django+Vue的建筑碳排放计算系统,以实现对建筑全生命周期碳排放的精准计算和科学管理。通过该系统,用户可以方便地录入建筑项目的相关信息,系统则能够自动计算并展示建筑在建造、运行、拆除等各个阶段的碳排放情况。同时,系统还将提供通知公告、中国区域电网碳排放因子、化石燃料消耗、绿化碳汇等辅助功能,以帮助用户更好地进行碳排放管理和决策。
研究内容
本研究将围绕建筑碳排放计算系统的核心功能展开,包括用户管理、通知公告发布与查看、项目管理、建造阶段碳排放计算、建筑拆除阶段碳排放计算、建材生产阶段碳排放计算、建材运输阶段碳排放计算、建筑运行阶段电能消耗及碳排放计算、中国区域电网碳排放因子查询、化石燃料消耗及碳排放计算、绿化碳汇计算与管理、建材生产及运输碳排放管理以及碳汇消耗管理等功能模块。通过集成这些功能模块,系统将能够为用户提供全面、准确的建筑碳排放计算服务,满足其在实际应用中的多样化需求。
进度安排:
2023年12月: 查看相关资料、技术,准备技术文档,做好需求分析;下发任务书;
2024年01月: 撰写开题报告,并制定软件开发计划,初步设计软件功能架构;
2024年02月: 根据需求分析,进行详细设计;初步设计软件部分功能,完成开题报告;
2024年03月: 对软件前,后台系统功能进行开发,完成软件各个功能模块,撰写论文初稿;
2024年04月:进行系统测试、论文初稿完成、和指导教师沟通,上交初稿,查重,中期检查;
2024年05月:修改论文,完成定稿,软件功能全部实现、测试、界面美化,上交论文资料,参加答辩。
参考文献:
[1] Hamed Tahmooresi, A. Heydarnoori et al. "An Analysis of Python's Topics, Trends, and Technologies Through Mining Stack Overflow Discussions." arXiv.org (2020).
[2] 韩文煜. "基于python数据分析技术的数据整理与分析研究"[J]. 科技创新与应用, 2020, No.296(04): 157-158.
[3] Sebastian Bassi. "A Primer on Python for Life Science Researchers." PLoS Comput. Biol. (2007).
[4] Roseline Bilina and S. Lawford. "Python for Unified Research in Econometrics and Statistics." (2009). 558 591.
[5] 程俊英. "基于Python语言的数据分析处理研究"[J]. 电子技术与软件工程, 2022, No.233(15): 236-239.
[6] 曾浩. "基于Python的Web开发框架研究"[J]. 广西轻工业, 2011, 27(08): 124-125+176.
[7] Fabian Pedregosa, G. Varoquaux et al. "Scikit-learn: Machine Learning in Python." Journal of machine learning research(2011).
[8] 陈佳佳, 邱晓荣, 熊宇昊, 段莉华. "基于Python的人脸识别技术研究"[J]. 电脑知识与技术, 2023, 19 (08): 34-36+39.
[9] 阿不都艾尼·阿不都肉素力. "Python的计算机软件应用技术分析"[J]. 电脑编程技巧与维护, 2021, No.435(09): 29-30+58.
[10] 张楠. "Python语言及其应用领域研究"[J]. 科技创新导报, 2019, 16(17): 122-123.
[11] 王雄伟, 侯海珍. "大数据专业Python程序设计课程建设探究"[J]. 知识窗(教师版), 2023, (10): 117-119.
[12] 朱向阳. "高中信息技术python项目式教学路径分析"[J]. 高考, 2023, (24): 126-128.
以上是开题是根据本选题撰写,是项目程序开发之前开题报告内容,后期程序可能存在大改动。最终成品以下面运行环境+技术栈+界面为准,可以酌情参考使用开题的内容。要源码请在文末进行获取!!
系统技术栈:
前端:Vue.js、HTML、CSS、JavaScript后端技术栈
后端:Python 3.7.7、Django 、MySQL5.7
开发工具:PyCharm社区版、Navicat 11以上版本
系统开发流程:
• 使用HTML、CSS和JavaScript结合Vue.js构建前端界面。
• 使用Python语言结合Django框架开发RESTful API。
• 利用MySQL数据库进行数据存储和查询。
• 通过PyCharm IDE进行代码编写、调试和项目管理。
毕设使用者指南
系统概览
本系统是一个基于现代Web技术构建的应用程序,旨在为用户提供一个交互性强、响应快速的用户体验。系统前端采用Vue.js框架,后端使用Python语言结合Django框架,并以MySQL作为数据存储解决方案。
前端使用指南
1.界面导航
- 主页:展示系统的主要功能和概览信息。
- 功能页面:根据需要,用户可以访问不同的功能页面,如用户管理、数据分析等。
2. 交互操作
- 使用HTML和CSS构建的界面元素,如按钮、链接、表单等,用户可以点击或输入信息进行操作。
- 利用JavaScript和Vue.js实现的动态功能,如实时数据更新、表单验证等,增强用户交互体验。
后端服务指南
1. API使用
- 系统后端提供RESTful API,用户可以通过HTTP请求与系统进行数据交互。
- 常见的API操作包括GET(获取数据)、POST(提交数据)、PUT(更新数据)和DELETE(删除数据)。
2. 数据管理
- 利用MySQL数据库,系统能够安全、高效地存储和管理用户数据。
- 用户可以通过系统界面或API访问数据库中的数据。