本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。
系统程序文件列表
开题报告内容
研究背景
随着互联网技术的迅猛发展和电子商务的普及,网上书店已成为人们购书的主要渠道之一。然而,面对海量书籍信息和多样化的读者需求,如何精准地为用户推荐感兴趣的书籍,提升用户购书体验和满意度,成为当前网上书店亟需解决的问题。协同过滤作为一种经典的推荐算法,能够基于用户的历史行为数据,挖掘用户潜在的兴趣偏好,实现个性化推荐。因此,结合Django框架的后端开发能力和Vue框架的前端交互优势,构建一个基于协同过滤的网上书店推荐系统,具有重要的实际应用价值和研究意义。
研究意义
本研究旨在通过应用协同过滤算法,提升网上书店的推荐精度和用户体验。通过Django框架搭建稳定、高效的后端服务,结合Vue框架实现前端页面的动态渲染和交互,为用户提供一个功能完善、操作便捷的网上书店平台。该系统不仅能够为用户提供个性化的书籍推荐,还能帮助书店提升销量和用户粘性,进一步推动电子商务的发展。同时,本研究也为协同过滤算法在电子商务领域的应用提供了新的思路和方法,具有一定的学术价值。
研究目的
本研究的主要目的是设计并实现一个基于Django+Vue的网上书店推荐系统,该系统通过集成协同过滤算法,能够根据用户的浏览、购买历史以及书籍的分类、信息等内容,自动为用户推荐可能感兴趣的书籍。通过该系统,用户可以更加便捷地找到心仪的书籍,提高购书效率;同时,书店也能通过精准推荐,提升用户满意度和忠诚度,进而实现销量的增长。
研究内容
本系统主要实现会员管理、书籍分类展示、书籍信息详情等功能。会员管理模块包括用户注册、登录、个人信息编辑等功能,确保用户能够安全、便捷地使用系统。书籍分类展示模块根据书籍的不同类型进行分类展示,方便用户快速定位感兴趣的书籍。书籍信息详情模块则提供书籍的详细介绍、作者信息、价格、库存情况等,为用户购买决策提供充分的信息支持。在这些功能模块的基础上,系统通过集成协同过滤算法,实现个性化的书籍推荐功能,根据用户的偏好和历史行为,为用户推荐可能感兴趣的书籍,提升用户体验和购书效率。
进度安排:
2023年12月: 查看相关资料、技术,准备技术文档,做好需求分析;下发任务书;
2024年01月: 撰写开题报告,并制定软件开发计划,初步设计软件功能架构;
2024年02月: 根据需求分析,进行详细设计;初步设计软件部分功能,完成开题报告;
2024年03月: 对软件前,后台系统功能进行开发,完成软件各个功能模块,撰写论文初稿;
2024年04月:进行系统测试、论文初稿完成、和指导教师沟通,上交初稿,查重,中期检查;
2024年05月:修改论文,完成定稿,软件功能全部实现、测试、界面美化,上交论文资料,参加答辩。
参考文献:
[1] Hamed Tahmooresi, A. Heydarnoori et al. "An Analysis of Python's Topics, Trends, and Technologies Through Mining Stack Overflow Discussions." arXiv.org (2020).
[2] 韩文煜. "基于python数据分析技术的数据整理与分析研究"[J]. 科技创新与应用, 2020, No.296(04): 157-158.
[3] Sebastian Bassi. "A Primer on Python for Life Science Researchers." PLoS Comput. Biol. (2007).
[4] Roseline Bilina and S. Lawford. "Python for Unified Research in Econometrics and Statistics." (2009). 558 591.
[5] 程俊英. "基于Python语言的数据分析处理研究"[J]. 电子技术与软件工程, 2022, No.233(15): 236-239.
[6] 曾浩. "基于Python的Web开发框架研究"[J]. 广西轻工业, 2011, 27(08): 124-125+176.
[7] Fabian Pedregosa, G. Varoquaux et al. "Scikit-learn: Machine Learning in Python." Journal of machine learning research(2011).
[8] 陈佳佳, 邱晓荣, 熊宇昊, 段莉华. "基于Python的人脸识别技术研究"[J]. 电脑知识与技术, 2023, 19 (08): 34-36+39.
[9] 阿不都艾尼·阿不都肉素力. "Python的计算机软件应用技术分析"[J]. 电脑编程技巧与维护, 2021, No.435(09): 29-30+58.
[10] 张楠. "Python语言及其应用领域研究"[J]. 科技创新导报, 2019, 16(17): 122-123.
[11] 王雄伟, 侯海珍. "大数据专业Python程序设计课程建设探究"[J]. 知识窗(教师版), 2023, (10): 117-119.
[12] 朱向阳. "高中信息技术python项目式教学路径分析"[J]. 高考, 2023, (24): 126-128.
以上是开题是根据本选题撰写,是项目程序开发之前开题报告内容,后期程序可能存在大改动。最终成品以下面运行环境+技术栈+界面为准,可以酌情参考使用开题的内容。要源码请在文末进行获取!!
系统技术栈:
前端:Vue.js、HTML、CSS、JavaScript后端技术栈
后端:Python 3.7.7、Django 、MySQL5.7
开发工具:PyCharm社区版、Navicat 11以上版本
系统开发流程:
• 使用HTML、CSS和JavaScript结合Vue.js构建前端界面。
• 使用Python语言结合Django框架开发RESTful API。
• 利用MySQL数据库进行数据存储和查询。
• 通过PyCharm IDE进行代码编写、调试和项目管理。
毕设使用者指南
系统概览
本系统是一个基于现代Web技术构建的应用程序,旨在为用户提供一个交互性强、响应快速的用户体验。系统前端采用Vue.js框架,后端使用Python语言结合Django框架,并以MySQL作为数据存储解决方案。
前端使用指南
1.界面导航
- 主页:展示系统的主要功能和概览信息。
- 功能页面:根据需要,用户可以访问不同的功能页面,如用户管理、数据分析等。
2. 交互操作
- 使用HTML和CSS构建的界面元素,如按钮、链接、表单等,用户可以点击或输入信息进行操作。
- 利用JavaScript和Vue.js实现的动态功能,如实时数据更新、表单验证等,增强用户交互体验。
后端服务指南
1. API使用
- 系统后端提供RESTful API,用户可以通过HTTP请求与系统进行数据交互。
- 常见的API操作包括GET(获取数据)、POST(提交数据)、PUT(更新数据)和DELETE(删除数据)。
2. 数据管理
- 利用MySQL数据库,系统能够安全、高效地存储和管理用户数据。
- 用户可以通过系统界面或API访问数据库中的数据。