PyTorch报错RuntimeError: CUDA error: out of memory的显存优化

PyTorch报错RuntimeError: CUDA error: out of memory的显存优化

在深度学习训练中,RuntimeError: CUDA error: out of memory是常见的显存不足错误,尤其在处理大型模型或高分辨率数据时。本文结合CSDN社区技术实践,提供系统化解决方案,包含代码示例和性能对比分析。


一、核心原因分析

  1. 批量大小(Batch Size)过大
    每次迭代处理的样本数量直接影响显存占用,例如:

    • ResNet50在224×224输入下,Batch Size=64时显存占用约8GB。
  2. 模型复杂度过高
    卷积层、全连接层参数及中间激活值占用显存。例如:

    • BERT-base模型参数约110MB,但中间激活值可能占用数GB显存。
  3. 显存碎片化
    频繁的显存分配/释放导致连续内存不足。

  4. 数据类型选择不当
    FP32比FP16多占用2倍显存。


二、解决方案矩阵

1. 基础优化策略

方案1:动态调整批量大小
import torch
from torch.utils.data import DataLoader

# 动态计算最大可支持Batch Size
def get_max_batch_size(model, dummy_input, max_mem_gb=8):
    max_mem_bytes = max_mem_gb * 1024**3
    current_mem = torch.cuda.memory_allocated()
    batch_size = 1
    while True:
        try:
            with torch.no_grad():
                _ = model(dummy_input[:batch_size])
            new_mem = torch.cuda.memory_allocated()
            if new_mem - current_mem > max_mem_bytes:
                break
            batch_size *= 2
        except RuntimeError:
            batch_size //= 2
            break
    return batch_size

# 示例使用
model = torch.nn.Linear
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

喜欢编程就关注我

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值