题目:
A B C D E
D F G
+ D F G
───────
X Y Z D E
其中每个字母代表一个数字,且不同数字对应不同字母,请还原这些数字。
解:
1、 通过观察发现此算式正好有ABCDEFXYZ十个不同的数字即分别对应了0123456789;
2、 进一步观察发现DE + FG + FG = DE,这种情况只有FG + FG = []00时才有可能,所以得出FG=50,即:
A B C D E
D 5 0
+ D 5 0
───────
X Y Z D E
3、 继续观察发现AB到最后都变了,说明都发生了进位,进到A上的数最大超不过1,因为假设B取最大9,低位进最大9,9+9=18进1,所以得A+1=X,实际上在这里低位不可能进9,因为D+5+5最多向前进1,所以C+D+D+1最大可能为8+9+9+1=27,所以最大只能进2,得出B+2>9,所以B只能取8或9,若取8,8+2=10,Y=0与G=0矛盾,所以B=9,且低位只能进2,得Y=1即:
A 9 C D E
D 5 0
+ D 5 0
───────
X 1 Z D E
4、 C+D+D+1要进2则必须>20,C现在最大只能取到8,所以D必须取>5的数字才能使结果>20,所以D可能取6、7、8,依次试之,设D=6,6+6+1=13,要>20,C必须为8,这样Z就为1与Y=1矛盾;设D=7,7+7+1=15,要>20,C必须为6或8,假设C=6,得Z为1,与Y=1矛盾,设C=8,得Z=3可行,可是这样一来还剩余2、4、6三个数字留给A、X、E,因为A+1=X所以这条路不通,说明D=7的假设是错误的,那么只剩下D=8了,8+8+1=17,所以C必须>4,可能取6、7,这样A、X只能分别取2、3,E只能即:
2 9 C 8 E
8 5 0
+ 8 5 0
───────
3 1 Z 8 E
5、 C若取6,的Z=3与X=3矛盾,所以C=7,Z=4,E=6,即得最终结果:
2 9 7 8 6
8 5 0
+ 8 5 0
───────
3 1 4 8 6