动态规划入门

动态规划入门

什么是动态规划,我相信大多数同学都听过关于他的传说,但是都未真正的见识到他的庐山真面目。动态规划一直是算法竞赛中的重中之重,也是非常难的一类问题。无论是小学竞赛还是后面初高中和大学算法竞赛,都会时常见到他的身影。动态规划作为一类非常复杂的算法问题,因此现阶段,我们只需要对动态规划做一个初步的了解即可,随着我们后面的学习和知识的不断积累,还会继续深入的学习动态规划的其他知识点,所以同学们在学习本章节时也不要有太大的负担。好消息是,最近几年,合肥市信息学竞赛都未涉及动态规划类型的题目。坏消息是,在去年的庐阳区区赛的最后一题考察了动态规划的题目。因此大家对于一些简单的动态规划类型的题目还是需要掌握的,小学阶段的动态规划代码都非常简单,因此学习的重点在于,遇到一道题目的时候我们为什么要选择使用动态规划问题?希望同学们带着这个问题学习动态规划章节。本阶段,我们只讲解动态规划中的两个最简单的问题,分别是线性动态规划问题和01背包问题。现在,我们试着从一个例子带大家一步步来认识什么是动态规划吧。

从一个生活问题谈起

先来看看生活中经常遇到的事吧;假设您是个土豪,身上带了足够的1、5、 10、20、50、100元面值的钞票。现在您的目标是凑出某个金额w,需要用到尽量少的钞票。 依据生活经验,我们显然可以采取这样的策略:能用100的就尽量用100的,否则尽量用50的……依次类推。在这种策略下,666=6×100+1×50+1×10+1×5+1×1,共使用了10张钞票。 很显然,这种算法思想大家非常熟悉,这就是“贪心”。但是,这种贪心策略一定是对的吗? 举另外一个例子,如果我们换一组钞票的面值,贪心策略就也许就不成立了。如果一个奇葩国家的钞票面额分别是1、5、11,那么我们在凑出15的时候,贪心策略会出错: 15=1×11+4×1 (贪心策略使用了5张钞票) 15=3×5 (正确的策略,只用3张钞票) 为什么会这样呢?贪心策略错在了哪里?

鼠目寸光

刚刚已经说过,贪心策略的纲领是:“尽量使接下来面对的w更小”。这样,贪心策略在w=15的局面时,会优先使用11来把w降到4;但是在这个问题中,凑出4的代价是很高的,必须使用4×1。如果使用了5,w会降为10,虽然没有4那么小,但是凑出10只需要两张5元。 在这里我们发现,贪心是一种只考虑眼前情况的策略。 那么,现在我们怎样才能避免鼠目寸光呢? 如果直接暴力枚举凑出w的方案,明显复杂度过高。太多种方法可以凑出w了,枚举它们的时间是不可承受的。我们现在来尝试找一下性质。 重新分析刚刚的例子。w=15时,我们如果取11,接下来就面对w=4的情况;如果取5,则接下来面对w=10的情况。我们发现这些问题都有相同的形式:“给定w,凑出w所用的最少钞票是多少张?”接下来,我们用f(n)来表示“凑出n所需的最少钞票数量”。 那么,如果我们取了11,最后的代价(用掉的钞票总数)是多少呢? 明显cost=f(4)+1=4+1=5 ,它的意义是:利用11来凑出15,付出的代价等于f(4)加上自己这一张钞票。现在我们暂时不管f(4)怎么求出来。 依次类推,马上可以知道:如果我们用5来凑出15,cost就是f(10)+1=2+1=3 。 那么,现在w=15的时候,我们该取那种钞票呢?当然是各种方案中,cost值最低的那一个!取11:cost=f(4)+1=4+1=5取5: cost=f(10)+1=2+1=3取1: cost=f(14)+1=4+1=5 显而易见,cost值最低的是取5的方案。我们通过上面三个式子,做出了正确的决策!这给了我们一个至关重要的启示—— f(n)只与f(n-1),f(n-5),f(n-11) 相关;更确切地说:f(n)=min{f(n-1),f(n-5),f(n-11)}+1; 这个式子是非常激动人心的。我们要求出f(n),只需要求出几个更小的f值;既然如此,我们从小到大把所有的f(i)求出来不就好了?注意一下边界情况即可。代码如下:

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int f[105],i,n,cost;
    cin>>n;
    f[0]=0;
    for(i=1;i<=n;i++)
    {   
        cost=INT_MAX;
        if(i-1>=0)  cost=min(cost,f[i-1]+1);  
        if(i-5>=0)  cost=min(cost,f[i-5]+1);
        if(i-11>=0) cost=min(cost,f[i-11]+1);
        f[i]=cost;
        cout<<"f["<<i<<"]"<<"="<<f[i]<<endl; 
    }
    cout<<f[n]; 
}

我们以O(n)的复杂度解决了这个问题。现在回过头来,我们看看它的原理:f(n)只与f(n-1),f(n-5),f(n-11) 的值相关。我们只关心f(w)的值,不关心是怎么凑出w的。 这两个事实,保证了我们做法的正确性。它比起贪心策略,会分别算出取1、5、11的代价,从而做出一个正确决策,这样就避免掉了“鼠目寸光”! 它与暴力的区别在哪里?我们的暴力枚举了“使用的硬币”,然而这属于冗余信息。我们要的是答案,根本不关心这个答案是怎么凑出来的。譬如,要求出f(15),只需要知道f(14),f(10),f(4)的值。其他信息并不需要。我们舍弃了冗余信息。我们只记录了对解决问题有帮助的信息——f(n). 我们能这样干,取决于问题的性质:求出f(n),只需要知道几个更小的f©。我们将求解f©称作求解f(n)的“子问题”。 这就是DP(动态规划,dynamic programming). 将一个问题拆成几个子问题,分别求解这些子问题,即可推断出大问题的解。思考题:请稍微修改代码,输出我们凑出w的方案。

几个简单的概念

【无后效性】
  一旦f(n)确定,“我们如何凑出f(n)”就再也用不着了。

要求出f(15),只需要知道f(14),f(10),f(4)的值,而f(14),f(10),f(4)是如何算出来的,对之后的问题没有影响。

“未来与过去无关”,这就是无后效性。

(严格定义:如果给定某一阶段的状态,则在这一阶段以后过程的发展不受这阶段以前各段状态的影响。)

【最优子结构】
  回顾我们对f(n)的定义:我们记“凑出n所需的最少钞票数量”为f(n).

f(n)的定义就已经蕴含了“最优”。利用w=14,10,4的最优解,我们即可算出w=15的最优解。

大问题的最优解可以由小问题的最优解推出,这个性质叫做“最优子结构性质”。

引入这两个概念之后,我们如何判断一个问题能否使用DP解决呢?

能将大问题拆成几个小问题,且满足无后效性、最优子结构性质。

【DP的核心思想】
  DP为什么会快?
  无论是DP还是暴力,我们的算法都是在可能解空间内,寻找最优解。

来看钞票问题。暴力做法是枚举所有的可能解,这是最大的可能解空间。
  DP是枚举有希望成为答案的解。这个空间比暴力的小得多。

也就是说:DP自带剪枝。

DP舍弃了一大堆不可能成为最优解的答案。譬如:
  15 = 5+5+5 被考虑了。
  15 = 5+5+1+1+1+1+1 从来没有考虑过,因为这不可能成为最优解。

从而我们可以得到DP的核心思想:尽量缩小可能解空间。

在暴力算法中,可能解空间往往是指数级的大小;如果我们采用DP,那么有可能把解空间的大小降到多项式级。

一般来说,解空间越小,寻找解就越快。这样就完成了优化。

【DP的操作过程】
  一言以蔽之:大事化小,小事化了。

将一个大问题转化成几个小问题;求解小问题;推出大问题的解。

【DP三连】
  设计DP算法,往往可以遵循DP三连:

我是谁? ——设计状态,表示局面
  我从哪里来?
  我要到哪里去? ——设计转移

设计状态是DP的基础。接下来的设计转移,有两种方式:一种是考虑我从哪里来;另一种是考虑我到哪里去,这常见于求出f(x)之后,更新能从x走到的一些解。这种DP也是不少的,我们以后会遇到。

最后,我们一起念一遍DP三连吧——我是谁?我从哪里来?我要到哪里去?

01背包问题

假设你是一名经验丰富的探险家,背着背包来到野外进行日常探险。天气晴朗而不燥热,山间的风夹杂着花香,正当你欣赏这世外桃源般的美景时,突然,你发现了一个洞穴,这个洞穴外表看起来其貌不扬,但凭借着惊为天人的直觉,这个洞穴不简单。
于是,你开始往洞穴内探索,希望能发现一些有意思的东西。终于,皇天不负有心人,你在洞穴的尽头,发现了一堆珠宝,凭借你惊人的阅历,一眼便看出了它们各自的价值,心想着下下下下下下下下半辈子都有着落了。
然而,天有不测风云,正准备将它们收入囊中,却不小心触碰到一个防御机关,洞穴马上就要崩塌了。在此危机时刻,你只有一个背包,你必须尽快做出抉择,从中选择最值钱的珠宝塞到你的背包,让背包中珠宝的总价值最大。
好了好了,啰里啰嗦了大半天,我还是来精简一下问题吧。简而言之,你只有一个容量有限的背包,总容量为c,有n个可待选择的物品,每个物品只有一件,它们都有各自的重量和价值,你需要从中选择合适的组合来使得你背包中的物品总价值最大。
问题分析:
那还不简单,不管是什么,先往背包里塞,塞满赶紧走,狗命要紧,狗命要紧。。。
好了好了,开个玩笑,言归正传。
简单起见,我们来将上面的问题具体化,举一个更具体的栗子:
假设有4个物品,它们的价值(v)和重量(w)如下图:
在这里插入图片描述

背包总容量为10,现在要从中选择物品装入背包中,要求物品的重量不能超过背包的容量,并且最后放在背包中物品的总价值最大。
emmm,等等,为什么叫做0/1背包呢?为什么不叫1/2背包,2/3背包???
仔细想想,这里每个物品只有一个,对于每个物品而言,只有两种选择,盘它或者不盘,盘它记为1,不盘记为0,我们不能将物品进行分割,比如只拿半个是不允许的。这就是这个问题被称为0/1背包问题的原因。
所以究竟选还是不选,这是个问题。
让我们先来体验一下将珠宝装入背包的感觉,为了方便起见,用xi代表第i个珠宝的选择(xi = 1 代表选择该珠宝,0则代表不选),vi代表第i个珠宝的价值,wi代表第i个珠宝的重量。于是我们就有了这样的限制条件:
在这里插入图片描述
我们的初始状态是背包容量为10,背包内物品总价值为0,接下来,我们就要开始做选择了。对于1号珠宝,当前容量为10,容纳它的重量2绰绰有余,因此有两种选择,选它或者不选。我们选择一个珠宝的时候,背包的容量会减少,但是里面的物品总价值会增加。就像下面这样:
在这里插入图片描述

这样就分出了两种情况,我们继续进行选择,如果我们选择了珠宝1,那么对于珠宝2,当前剩余容量为8,大于珠宝2的容量3,因此也有两种选择,选或者不选。
在这里插入图片描述
现在,我们得到了四个可能结果,我们每做出一个选择,就会将上面的每一种可能分裂成两种可能,后续的选择也是如此,最终,我们会得到如下的一张决策图:
在这里插入图片描述

这里被涂上色的方框代表我们的最终待选结果,本来应该有16个待选结果,但有三个结果由于容量不足以容纳下最后一个珠宝,所以就没有继续进行裂变。
然后,我们从这些结果中,找出价值最大的那个,也就是13,这就是我们的最优选择,根据这个选择,依次找到它的所有路径,便可以知道该选哪几个珠宝,最终结果是:珠宝4,珠宝2,珠宝1。
简单的看,对于每个物品,无外乎两种可能:选,或者不选。
不选的话,背包的容量不变,最大价值还是之前的价值;
选的话,背包的容量变小,价值变大。
最优方案就是比较这两种方案,哪个会更好些:

01背包问题

在这里插入图片描述
[算法分析]
定义状态∶d(i,j)表示为前i个物品分配j容量的背包,可以获得的最大价值。

对于物品i有2种选择∶

选择1∶ 不选择将i放入背包∶ d(i, j) = d(i-1,j)。

选择2∶选择将i放入背包d(i,j)=d(i-1,j-w_iwi)+ v_ivi(j>=w_iwi)。

状态转移方程∶ d(i,j)= max(d(i-1,j), d(i-1,j-w_iwi)+ v_ivi)。
完整代码如下:

#include<bits/stdc++.h>
using namespace std;
int w[1001],v[1001],dp[1001][1001];
int main()
{
    int n,m;
    cin>>m>>n;
    for(int i=1;i<=n;i++)
    {
        cin>>w[i]>>v[i];  //输入重量跟价值,有些题目是相反的
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            if(j<w[i])    //如果要选的物品重量超过了剩余的容量
            {
                dp[i][j]=dp[i-1][j];  //最大价值还是之前一次的价值
            }
            else     //如果要选的物品重量小于剩余的容量
            {
                dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);  //比较一下选与不选该物品谁的价值更大。不选则为之前的价值是dp[i-1][j],选择的话这个时候的价值就是dp[i-1][j-w[i]]+v[i],即在之前的基础上容量少了w[i],但是价值大了v[i];
            }
        }
    }
    cout<<dp[n][m];
}

背包

有个背包可承受重量N,现有T件物品,每件物品重量为w_iwi,价值为v_ivi ,每件物品只有一个,这个背包可以装载物品的最大价值是多少?
输入格式
第一行,两个整数,分别表示N和T,用空格隔开(N≤1000,T≤100)
接下来T行,每行两个整数,分别表示T件物品的重量w_iwi和价值v_ivi(1≤w_iwi,v_ivi≤100)
输出格式
一行,表示这个背包可以装载物品的最大价值
输入输出样列

输入样例1:
100 5
77 92
22 22
29 87
50 46
99 90

输出样例1:
133

[算法分析]
定义状态∶d(i,j)表示为前i个物品分配j容量的背包,可以获得的最大价值。

对于物品i有2种选择∶

选择1∶ 不选择将i放入背包∶ d(i, j) = d(i-1,j)。

选择2∶选择将i放入背包d(i,j)=d(i-1,j-w_iwi)+ v_ivi(j>=w_iwi)。

状态转移方程∶ d(i,j)= max(d(i-1,j), d(i-1,j-w_iwi)+ v_ivi)。
完整代码如下:

#include<bits/stdc++.h>
using namespace std;
const int N=1005,T=105;
int dp[T][N],v[T],w[T];
int main()
{
    int n,t;
    cin>>n>>t;
    for(int i=1;i<=t;i++)
    {
        cin>>w[i]>>v[i];
    }
    for(int i=1;i<=t;i++)  //t件物品
    {
        for(int j=1;j<=n;j++)  //背包大小为n
        {
            if(j>=w[i])
                dp[i][j]=max(dp[i-1][j],v[i]+dp[i-1][j-w[i]]);
            else
                dp[i][j]=dp[i-1][j];
        }
    }
    cout<<dp[t][n];
    return 0;
} 

开心的金明 [happy]

在这里插入图片描述
说明
NOIP2006年普及组第二题
[算法分析]
金明拥有的钱是背包大小,物品的价格是其占用的背包容量,物品的价格*重要度是其带来的价值,题目要求价值最大。

定义状态∶ d(i,j)表示为前i个物品分配i容量的背包,可以获得的最大价值。

对于物品i有2种选择∶

选择1∶ 不选择将i放入背包∶ d(i,j)= d(i-1, j)。

选择2∶选择将i放入背包d(i,j)=d(i-1,j- w_iwi)+ v_ivi (j>=w_iwi)。
状态转移方程∶ d(i, j)= max(d(i-1,j), d(i-1,j-w_iwi)+ v_ivi)。

注意∶物品价值是他的价格和重要度的乘积!

完整的代码如下:

#include<bits/stdc++.h>
using namespace std;
const int N=30,M=30005;
int n,m,w[N],v[N],d[N][M];
int main()
{ 
    //n件物品,承重量为c 
    cin>>m>>n;
    for(int i=1;i<=n;i++)
    {
        cin>>w[i]>>v[i];
        v[i]=v[i]*w[i]; //重要度乘以价格 
    }
    for(int i=1;i<=n;i++)  
    {
        for(int j=1;j<=m;j++)  
        {
            if(j>=w[i])
                d[i][j]=max(d[i-1][j],d[i-1][j-w[i]]+v[i]);
            else
                d[i][j]=d[i-1][j];
        }
    }
    cout<<d[n][m];
    return 0;
} 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

10247D

我会继续努力,信息技术会越好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值