自然语言处理(NLP):20 基于知识图谱的智能问答系统

本文介绍了如何构建基于知识图谱的智能问答系统,重点讨论了数据集中的实体和属性歧义问题,以及KBQA的整体流程。通过BERT+CRF进行命名实体识别,利用文本相似度模型进行答案匹配。文章还涵盖了数据预处理、模型训练、知识库构建和在线服务的部署。
摘要由CSDN通过智能技术生成

基于知识图谱的问答系统答即根据一个问题,抽出一条三元组,生成类 sql 语句,知识图谱查询返回答案。本文是基于知识图谱的问答系统,通过 BERT+CRF 做命名实体识别和句子相似度比较,最后实现线上的部署。

针对知识图谱的问题系统,重点解决的几个重要问题。通过本文学习,让你掌握知识图谱涉及的主要内容,通过本文分享,大家搭建快速搭建一个知识图谱的智能问答应该没什么问题了。

  • 知识库创建( 一般情况下,这个工作工作非常大,也非常重要。针对数据一般来自公司、比赛、以及通过爬虫来构建数据知识库)
  • 命名实体识别(一般通过bert_crf,bilstm_crf 等模型来完成,实际工作一般也需要工作增加规则来处理)
  • 实体链接到知识库进行检索(我们识别实体后,如何正确去对应到我们的知识库,也是我们的重点,这块很多思路大家可以提前在nlp 很多比赛都有提及)
  • 基于知识库的问答(一般我们都是基于图数据库来完成的,根据数据量的大小来选择,例如:neo4j、JanusGraph等。如果是简单的知识库关系可以mysql,redis,mongo存储即可)
  • 知识图谱一般垂直领域图谱或者开放领域图谱,持续优化的过程关注在知识库创建上。创建完成,可
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艾文教编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值