多层前馈神经网络及BP算法

一.多层前馈神经网络
首先说下多层前馈神经网络,BP算法,BP神经网络之间的关系。多层前馈[multilayer feed-forward]神经网络由一个输入层、一个或多个隐藏层和一个输出层组成,后向传播[BP]算法在多层前馈神经网络上面进行学习,采用BP算法的[多层]前馈神经网络被称为BP神经网络。给出一个多层前馈神经网络的拓扑结构,如下所示:
图1 多层前馈神经网络
神经网络的拓扑结构包括:输入层的单元数、隐藏层数[如果多于一层]、每个隐藏层的单元数和输出层的单元数。神经网络可以用于分类[预测给定元组的类标号]和数值预测[预测连续值输出]等。

二.后向传播[BP]算法详解
1.初始值权重
神经网络的权重被初始化为小随机数,每个神经元都有一个相关联的偏置,同样也被初始化为小随机数。
2.前向传播输入
以单个神经网络单元为例,如下所示:
这里写图片描述
给定隐藏层或输出层的单元 j j j,到单元 j j j的净输入 I j I_{j} Ij,如下所示:
I j = ∑ i w i j O i + θ j {I_j} = \sum\limits_i {{w_{ij}}{O_i} + {\theta _j}} Ij=iwijOi+θj
其中, w i j w_{ij} wij是由上一层的单元 i i i到单元 j j j的连接的权重; O i O_i Oi是上一层的单元 i i i的输出; θ j \theta_j θj是单元 j j j的偏置。需要说明的是偏置充当阀值,用来改变单元的活性。
给定单元 j j j的净输入 I j I_j Ij,单元 j j j的输出 O j O_j Oj,如下所示:
O j = 1 1 + e − I j {O_j} = \frac{1}{{1 + {e^{ - {I_j}}}}} Oj=1+eIj1
3.后向传播误差
[1]对于输出层单元 j j j,误差 E r r j Er{r_j} Errj用下式计算:
E r r j = O j ( 1 − O j ) ( T j − O j ) Er{r_j} = {O_j}\left( {1 - {O_j}} \right)\left( {{T_j} - {O_j}} \right) Errj=Oj(1Oj)(TjOj)
其中, O j O_j Oj是单元 j j j的实际输出,而 T j T_j Tj j j j给定训练元组的已知目标值。需要说明的是, O j ( 1 − O j ) {O_j}\left( {1 - {O_j}} \right) Oj(1Oj)是逻辑斯缔函数的导数。
[2]对于隐藏层单元 j j j,它的误差用下式计算:
E r r j = O j ( 1 − O j ) ∑ k E r r k w j k Er{r_j} = {O_j}\left( {1 - {O_j}} \right)\sum\limits_k {Er{r_k}{w_{jk}}} Errj=Oj(1Oj)kErrkwjk
其中, w j k w_{jk} wjk是由下一较高层中单元 k k k到单元 j j j的连接权重,而 E r r j Er{r_j} Errj是单元 k k k的误差。
[3]权重更新,如下所示:
Δ w i j = ( l ) E r r j O i w i j = w i j + Δ w i j \begin{array}{l} \Delta {w_{ij}} = \left( l \right)Er{r_j}{O_i} \\ {w_{ij}} = {w_{ij}} + \Delta {w_{ij}} \\ \end{array} Δwij=(l)ErrjOiwij=wij+Δwij
其中, Δ w i j \Delta {w_{ij}} Δwij是权重 w i j w_{ij} wij的改变量,变量 l l l是学习率,通常取0.0和1.0之间的常数值。
[4]偏置更新,如下所示:
Δ θ j = ( l ) E r r j θ j = θ j + Δ θ j \begin{array}{l} \Delta {\theta _j} = \left( l \right)Er{r_j} \\ {\theta _j} = {\theta _j} + \Delta {\theta _j} \\ \end{array} Δθj=(l)Errjθj=θj+Δθj
其中, Δ θ j \Delta {\theta _j} Δθj θ j \theta_j θj的改变量。
[5]权重和偏置更新
如果每处理一个样本就更新权重和偏置,称为实例更新[case update];如果处理完训练集中的所有元组之后再更新权重和偏置,称为周期更新[epoch update]。理论上,反向传播算法的数据推导使用周期更新,但是在实践中,实例更新通常产生更加准确的结果。
说明:误差反向传播的过程就是将误差分摊给各层所有单元,从而获得各层单元的误差信号,进而修正各单元的权值,即权值调整的过程。
4.终止条件
如果满足条件之一,就可以停止训练,如下所示:
[1]前一周期所有的都太小,小于某个指定的阀值。
[2]前一周期误分类的元组百分比小于某个阀值。
[3]超过预先指定的周期数。
实践中,权重收敛可能需要数十万个周期。神经网络的训练有很多的经验和技巧,比如可以使用一种称为模拟退火的技术,使神经网络确保收敛到全局最优。

三.用BP训练多层前馈神经网络
举个例子具体说明使用BP算法训练多层前馈神经网络的每个细节,如下所示:
这里写图片描述
设置学习率为0.9,第一个训练元组为 X = { 1 , 0 , 1 } X = \left\{ {1,0,1} \right\} X={1,0,1},其类标号为1。神经网络的初始权重和偏置值如表1所示:
这里写图片描述
根据给定的元组,计算每个神经元的净输入和输出,如表2所示:
这里写图片描述
每个神经元的误差值如表3所示:
这里写图片描述
说明:从误差的计算过程来理解反向[BP]传播算法也许更加直观和容易。
权重和偏置的更新如表4所示:
这里写图片描述
说明:将该神经网络模型训练好后,就可以得到权重和偏执参数,进而做二分类。

四.用Python实现BP神经网络[3]
神经网络拓扑结构,如下所示:
这里写图片描述
解析:
1.第33和35行:l1和l2分别表示第1层和第2层神经元的输出。[第0层表示元组输入]
2.第37行:l2_error与相对应。
3.第40行:l2_delta与输出层误差相对应。
4.第42行:l1_error与相对应。
5.第43行:l1_delta与隐藏层误差相对应。
6.第45行:l1.T.dot(l2_delta)与相对应,而syn1与相对应。
7.第46行:l0.T.dot(l1_delta)与相对应,而syn0与相对应。
说明:一边代码,一边方程,做到代码与方程的映射。这是一个基础的三层BP神经网络,但是麻雀虽小五脏俱全。主要的不足有几点:没有考虑偏置;没有考虑学习率;没有考虑正则化;使用的是周期更新,而不是实例更新[一个样本]和批量更新[m个样本]。但是,足以理解前馈神经网络和BP算法的工作原理。神经网络和BP算法的详细数学推导参考[5]。

参考文献:
[1]数据挖掘:概念与技术[第三版]
[2]使用Python构造神经网络:http://www.ibm.com/developerworks/cn/linux/l-neurnet/
[3]一个11行Python代码实现的神经网络:http://python.jobbole.com/82758/
[4]用BP人工神经网络识别手写数字:http://blog.csdn.net/gzlaiyonghao/article/details/7109898
[5]反向传导算法:http://ufldl.stanford.edu/wiki/index.php/%E5%8F%8D%E5%90%91%E4%BC%A0%E5%AF%BC%E7%AE%97%E6%B3%95

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NLP工程化

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值