- 博客(89)
- 收藏
- 关注
原创 python开发--乌龟对对碰实现(一)
"乌龟对对碰"是一种近期在网络直播平台上非常流行的盲盒玩法,消费者购买盲袋或盲盒,每个包含一个不同颜色的树脂乌龟玩具。玩家在购买时会许愿一个特定颜色的乌龟,卖家在直播间现场拆包,如果拆出许愿色或相同颜色的乌龟,会根据规则额外加拆盲袋,直到没有符合对对碰条件的盲袋为止。所有拆出的乌龟最终都归买家所有。这种玩法因其互动性和不确定性,给消费者带来了刺激感和乐趣,因而迅速走红网络。这种盲盒玩法不仅吸引了大量网友参与,甚至奥运冠军全红婵也参与其中,进一步推动了其火爆程度。
2024-08-20 17:55:31 1221
原创 基于PyTorch的MNIST手写数字GAN生成器
这份代码是利用深度学习技术,通过生成对抗网络(GAN)模型,实现了对手写数字图像的生成。MNIST数据集是一个广泛使用的数据库,包含了大量的手写数字灰度图像,是机器学习和计算机视觉领域的标准测试集。使用定义了一个简单的神经网络结构作为判别器。# ... 其他层 ...同样使用定义生成器网络结构。nn.ReLU(),# ... 其他层 ...nn.Tanh()
2024-08-19 23:45:42 762
原创 数据结构与算法--交换排序与归并排序
介绍了直接插入排序、简单选择排序、快速排序、二路归并排序的思想和排序过程。展示了快速排序的一次划分过程。提供了前三种排序的算法实现。
2024-08-19 13:43:40 1028
原创 PyTorch--语言建模的循环神经网络(RNN)的实现
嗨嗨嗨,这是每日代码小记,今天的代码是一个用于语言建模的循环神经网络(RNN)的PyTorch实现,灵感来源于PyTorch官方示例仓库中的"word_language_model"。......定义一个基于LSTM的RNN语言模型,包含嵌入层、LSTM层和线性层。使用的模型是一个基于长短期记忆网络(LSTM)的循环神经网络(RNN),专门用于语言建模任务。RNNLM。
2024-08-18 22:40:43 1205
原创 PyTorch--双向长短期记忆网络(BiRNN)在MNIST数据集上的实现与分析
本代码实现了一个基于PyTorch的双向长短期记忆网络(BiRNN),用于对MNIST数据集中的手写数字进行分类。MNIST数据集是一个广泛使用的计算机视觉数据集,包含了大量的手写数字图像,适合用来训练和测试深度学习模型。数据加载与预处理:使用库加载MNIST数据集,并应用了标准化变换以准备数据输入模型。BiRNN模型定义:模型使用nn.LSTM模块构建双向LSTM层,能够处理序列数据,并通过nn.Linear层进行最终的分类。设备无关性:通过自动选择GPU或CPU,提高了代码的通用性。训练与测试。
2024-08-17 22:25:07 1031 1
原创 数据结构与算法--二叉排序树
定义:二叉排序树是一棵具有特定顺序性质的二叉树。特性左子树上所有结点的关键字小于根结点的关键字。右子树上所有结点的关键字大于根结点的关键字。左、右子树本身也是二叉排序树。注意:没有相同关键字的结点。树表:以二叉树或树作为表的组织形式。树表是一类动态查找表,不仅适合于数据查找,也适合于表的插入和删除操作。常见的树表:二叉排序树平衡二叉树(AVL树)B树、B+树红黑树。
2024-08-17 11:25:45 492
原创 PyTorch--实现循环神经网络(RNN)模型
首先,这篇文章只能算是小笔记,如果前面的看过了这篇甚至可以省略就好了,更多的都是直接调用现成的,并不能算深入的手撕代码,只是做个小记录而已。这段代码提供了一个使用PyTorch库实现的循环神经网络模型,具体采用了长短期记忆网络(LSTM)作为其核心组件。该模型是为了处理序列数据而设计的,可以广泛应用于需要序列预测的场景。# 定义RNN模型,使用LSTM层和全连接层。定义一个RNN模型,其中包含LSTM层和用于分类的全连接层。
2024-08-16 22:27:00 1731
原创 数据结构与算法--图的应用
普里姆 (Prim) 算法和克鲁斯卡尔 (Kruskal) 算法构造最小生成树的方法。狄杰斯特拉 (Dijkstra) 算法求解单源点最短路径。拓扑排序的应用。
2024-08-15 22:54:04 723
原创 PyTorch--残差网络(ResNet)在CIFAR-10数据集进行图像分类
定义一个3x3的卷积层。# ...定义残差网络中的残差块,包含两个卷积层和批量归一化层。# ...定义ResNet模型,使用残差块构建多个层。定义交叉熵损失函数和Adam优化器。
2024-08-15 16:33:35 1180
原创 PyTorch--卷积神经网络(CNN)模型实现手写数字识别
今天要介绍的这段代码是一个使用PyTorch框架实现的卷积神经网络(CNN)模型,用于对MNIST数据集进行分类的示例。MNIST数据集是手写数字识别领域的一个标准数据集,包含0到9的灰度图像。导入必要的库:导入PyTorch、PyTorch神经网络模块、torchvision(用于处理图像数据集)和transforms(用于图像预处理)。设备配置:设置模型运行的设备,优先使用GPU(如果可用),否则使用CPU。超参数设置:定义了训练迭代的轮数(num_epochs)、类别数()、批次大小(
2024-08-14 22:19:54 1445
原创 数据结构与算法--图的存储与遍历
图G由顶点集合V和边集合E组成,记为G = (V, E)。V是顶点元素的有限集合,E是顶点间关系——边的有限集合。(边是顶点的无序对或有序对)无向图:边没有方向,由顶点的无序对组成。由没有方向的边构成的图。无向图中的边由顶点的无序对组成。(用圆括号表示)邻接点:无向图中,若存在一条边(Vi, Vj),则称Vi和Vj互为邻接点。右图中的边是无方向的,即 (V1, V2) 和 (V2, V1)表示同一条边。有向图:边有方向,由顶点的有序对组成,称为弧。由有方向的边构成的图。
2024-08-14 19:47:13 1115
原创 数据结构与算法--线索二叉树与哈夫曼树
/ 标记枚举类型,Link表示指向孩子,Thread表示线索char data;// 结点数据域// 左右标记域// 左右孩子或线索// 定义线索二叉树结点类型哈夫曼树(最优二叉树)是带权路径长度WPL最小的二叉树。结点的权:将树中结点赋予一个有某种意义的数值。
2024-08-12 10:46:30 676
原创 PyTorch--前馈神经网络模型实现与函数介绍
类定义和初始化方法# 前向传播return out类NeuralNet方法__init__:初始化网络层。forward:定义前向传播过程。用法:创建一个具有一个隐藏层的全连接神经网络模型,并将其移动到配置的设备上。函数和参数:模型参数、学习率。意义:定义了模型的损失函数和优化器。
2024-08-12 10:45:41 812
原创 数据结构--滑动窗口与LeetCodeHOT100
滑动窗口算法是一种在数据流或数组中处理连续子数组或子串问题的有效方法。它广泛应用于解决各种问题,如最大子数组和、无重复字符的最长子串等。本文将深入探讨滑动窗口算法的基本概念、实现方式、应用案例、优化策略以及面临的挑战。滑动窗口是一种迭代方法,通过在数据集合上滑动一个固定大小的窗口来遍历数据,同时保持窗口内的数据满足特定条件。
2024-08-11 09:10:18 1044
原创 PyTorch之线性回归模型实现与函数介绍
这段代码是一个简单的线性回归模型,使用PyTorch框架实现。今天我们来记录一下如何用pytorch构建线性回归模型以及其中相关的用法。
2024-08-10 08:24:43 652
原创 Postman接口测试基础教程--2024最新版
Postman 支持 HTTP 协议的接口调试与测试。功能强大,使用简单,易用性好。适合开发人员接口调试和测试人员接口测试。postman是一款支持http协议的接口调试与测试工具, 其主要特点就是功能强大, 使用简单且易用性好。无论是开发人员进行接口调试, 还是测试人员做接口测试, postman都是我们的首选工具之一。那么接下来就介绍下postman到底有哪些功能, 它们分别都能干些什么。下面先通过一张图来直观的来看下postman中所包含的功能。
2024-08-10 08:23:53 1089
原创 数据结构--双指针与LeetCodeHOT100
在编程和算法设计中,双指针技术是一种常用且强大的工具。它涉及使用两个指针在数据结构上进行操作,以解决特定的问题。双指针技术常见于数组、链表、字符串等数据结构的处理中,尤其在处理需要在数据集合中进行遍历、搜索和排序的场景时表现出色。双指针是一种算法策略,它使用两个游标(或索引)来遍历或操作数据结构中的元素。这两个指针可以以不同的速度移动,或者从不同的起点开始,以实现不同的算法目标。
2024-08-09 06:43:41 1012
原创 数据结构与算法--二叉树的遍历及应用
二叉树的三种遍历算法。根据前序(后序)+ 中序遍历序列确定二叉树的形态。根据前序遍历序列(带空指针)创建二叉树的过程。结合二叉树的遍历,求解实际问题。
2024-08-09 06:42:28 1028
原创 数据结构与算法——树与二叉树
RABCDEFGnull元素集合 K = {k_i | 0 ≤ i ≤ n, n ≥ 0, k_i ∈ ElemType}n 为树中结点数,n=0 为空树,n>0 为非空树。对于一棵非空树,关系R满足下列条件:有且仅有一个结点没有前驱,称为根结点。
2024-08-08 10:07:02 1011
原创 AI工具在编程领域的双刃剑效应:提升效率与潜在风险的探讨
AI编程工具在近年来取得了显著的发展,它们通过自动化代码生成、错误检测、文档编制和提供编码建议等功能,极大地提高了程序员的工作效率。例如,NVIDIA AI Workbench提供了一个统一平台,帮助开发人员管理数据、模型和计算资源,简化了从本地开发到云和数据中心部署的整个流程。然而,这种对AI编程工具的高度依赖也带来了一些风险。首先,AI生成的代码可能缺乏可解释性和透明度,这给代码的调试、维护和合规性带来了挑战。开发人员需要对AI生成的代码进行严格的审查和验证,以确保其逻辑性和准确性。
2024-08-08 10:05:32 1910
原创 python爬虫番外篇 | Reuqests库高级用法(2)
Requests支持自定义身份验证机制。通过实现AuthBase类,可以创建特定的认证方式,如下所示的PizzaAuthreturn r使用这种方式,可以轻松地为请求添加自定义的HTTP认证。如果需要使用非标准 HTTP 动词,可以使用request# 使用自定义 HTTP 动词 MKCOL。
2024-08-07 16:31:58 789
原创 数据结构与算法--递归
直接递归:函数直接调用自己间接递归:函数间接调用自己尾递归:求n!(n为正整数)的递归函数。函数fac(n) 直接调用fac(n-1)自身,是直接递归。递归调用是最后一条语句,又属于尾递归。( n!) 当 ( n > 1 )( 1!= 1 )( F(n) = F(n-1) + F(n-2) ) 当 ( n > 1 )return n;else对于递归数据结构,采用递归的方法编写算法既方便又有效。} else {递归的定义和模型递归的执行过程递归设计的一般方法。
2024-08-07 15:51:39 876
原创 python爬虫番外篇 | Reuqests库高级用法(1)
请注意,当设置为 时,请求将接受任何 TLS 服务器提供的证书,并将忽略主机名不匹配 和/或过期的证书,这将导致应用程序容易受到攻击 中间人 (MitM) 攻击。当未安装时,这导致了使用明显较旧的证书捆绑包时,证书捆绑包非常过时请求的版本。在将在请求中设置的理想情况,其中在这种情况下,您可以通过使用参数进行调用来逐块迭代。这是因为请求可能会尝试提供的标头,以及它是否执行此值将设置为文件中的字节数。这是因为请求可能会尝试提供的标头,以及它是否执行此值 将设置为文件中的字节数。可以在一个请求中发送多个文件。
2024-08-06 22:48:20 849
原创 python爬虫04 | Reuqests库快速入门,干穿urllib
什么是Requests库Requests是一个简单易用的HTTP库,用于Python编程语言。它允许你发送各种HTTP请求来与服务器进行交互。Requests库以其简洁的API和人性化的设计而广受开发者喜爱,使得进行网络请求变得直观和容易。Requests库最初由Kenneth Reitz开发,现在已经成为Python标准库之外最流行的HTTP客户端库之一。它建立在Python的urllib3库之上,提供了一个更高层次的接口来处理HTTP请求。Requests库的主要特点和优势人性化的API。
2024-08-06 19:33:51 959
原创 Unity面试知识点整理(持续更新中)
反射(Reflection)是一种程序功能,它允许程序在运行时查询和修改自身的结构和行为。在.NET框架和C#语言中,反射提供了一种机制,通过这种机制可以在运行时访问和操作类型信息、创建类型的实例、调用方法、访问字段和属性等。元数据.NET程序集(Assembly)包含元数据,这些数据描述了程序集中定义的类型、方法、属性等。反射利用这些元数据来获取类型信息。Type类类是所有类型信息的基类。通过Type对象,可以访问类的名称、属性、方法、字段等信息。程序集加载。
2024-08-03 23:43:54 1062
原创 数据结构与算法--队列
队列是一种受限的线性表,只能在一端插入,在另一端删除队尾(rear):允许插入的一端队头(front):允许删除的一端入队(enqueue):在队尾进行的插入操作出队(dequeue):在队头进行的删除操作队列特点:先进先出(FIFO)栈的应用非常广泛,在CPU内部就有提供栈这个机制。函数调用和返回,数字转字符,表达式求值,走迷宫等等。在CPU内部栈主要是用来进行子程序调用和返回,中断时数据保存和返回。在编程语言中:主要用来进行函数的调用和返回。在计算机中,可以说,
2024-08-03 22:31:27 914
原创 计算机组成原理--计算机系统概论(2)
程序员看到的机器属性:计算机体系结构是指程序员所看到的机器的属性,即机器的概念性结构和功能表现。这里,程序员主要是指汇编程序员。同一厂家生产的具有相同计算机体系结构的计算机称为系列计算机(Family Computer),简称系列机。软件兼容:同一个程序可以不加修改地在具有相同体系结构的各档机器上正确运行,唯一区别仅仅在于运行时间长短不同。安达尔就是以**软件兼容(统一机器语言)**的方式解决了程序的可移植性问题。指令集为核心,指令集就是软、硬件功能划分的界面。
2024-08-02 17:02:08 1066
原创 数据结构与算法--栈
栈(Stack)是限定只能在表的一端进行插入和删除操作的线性表。允许插入和删除运算的一端称为栈顶(top),不允许插入和删除的另一端称为栈底(bottom)。在栈顶进行的插入操作称为入栈或进栈(push),在栈顶进行的删除操作称为出栈或退栈(pop)特点:后进先出(LIFO, Last In First Out)。栈的后进先出特性。顺序栈和链栈的入栈、出栈操作。栈在中缀表达式转换为后缀表达式中的应用。
2024-08-02 16:20:32 1107
原创 计算机组成原理--计算机系统概论
将了解计算机的组成、工作原理及应用,掌握各组成部分之间的联系,包括总线、存储器、输入输出系统以及CPU的内部结构和功能。将对计算机体系结构有较好的理解,并具备一定的问题分析和解决能力。(2)由于外围的四个部件只能与中心部件进行数据通信,而且有些数据通路还是单向的。进而冯诺依曼计算机所需要的数据传送功能也是最少的、最简单的。(1)这样实现的“五个部件互联”是最简单的、连接链路是最少的。
2024-08-01 11:10:07 941
原创 数据结构与算法--线性表的链式存储
假定在链表中指定结点之前插入一个新结点,要完成这种插入必须首先找到所插位置的前一个结点,再进行插入。假设指针p指向待插位置的前驱结点,指针t指向新结点。单链表结点的插入是利用修改结点指针域的值,使其指向新的链接位置来完成插入操作,无需移动任何元素。结构:头指针,保存链表第一个结点的地址,尾结点指针域的值为空(NULL)。顺序存储结构优点:简单,可随机存取,存取速度快,每个结点只存储元素信息。:使用一组地址任意的存储单元,依存储线性表中的各数据元素。每个结点中既有指向后继的指针域,又有指向前驱的指针域。
2024-08-01 10:56:22 1067
原创 Python爬虫入门03:用Urllib假装我们是浏览器
Python的Urllib库是一个用于处理URL的库,它提供了一系列丰富的功能来帮助我们与互联网进行交互。request:用于发起网络请求。error:包含定义和处理请求错误的异常类。parse:用于解析URL以及URL的各个组成部分。:用于解析网站的robots.txt文件,以确定哪些页面可以被爬虫访问。# 定义请求参数字典params = {"username": "your_username", # 替换为您的用户名。
2024-07-31 23:26:01 1552
原创 数据结构与算法--线性表的顺序存储
线性表由n个相同属性的数据元素组成,可以为空表或表示为 ( A = (a_1, a_2, …, a_i, …, a_n) )。线性表的逻辑特征包括:有且仅有一个表头元素 ( a_1 ),无前驱。有且仅有一个表尾元素 ( a_n ),无后继。表头元素和表尾元素之外的其他元素都有一个前驱和一个后继。线性表的长度为n,当n=0时,称为空表。一般形式:线性表数据结构定义n0}其中,关系的定义< ai , ai+1 >:ai , ai+1 必定相邻;
2024-07-31 10:30:34 672
原创 开启智能开发的新纪元:探索 GPT-4o mini 模型的无限可能
GPT-4o mini 模型是 OpenAI 针对中小型企业和独立开发者推出的一款高性能、低成本的 AI 模型。它继承了 GPT 系列模型的强大语言理解与生成能力,同时在资源消耗和成本上进行了优化,使其更适合广泛的应用场景。
2024-07-30 16:50:37 607
原创 深入理解PyTorch:基础语法与构建深度学习模型步骤
使用torch.nn模块可以定义神经网络模型。nn.ReLU(),首先,你需要定义你的模型。这通常涉及创建一个继承自nn.Module的类,并在其中初始化层和定义前向传播逻辑。return x选择一个损失函数来评估模型的预测与真实标签之间的差异,并选择一个优化器来更新模型的权重。loss_fn = nn.CrossEntropyLoss() # 用于多分类问题optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 使用Adam优化器。
2024-07-30 16:03:10 1250
原创 数据结构--哈希表与力扣HOT100题结合
然而,数组的尺寸通常是固定的,且在数组末尾之外插入或删除元素效率较低。相比之下,哈希表提供了更高的灵活性,允许动态地添加和删除键值对,但在最佳情况下才能提供常数时间的访问效率。哈希表的主要优势在于它可以提供非常快速的数据插入和查找操作,理论上可达到接近常数时间的性能。树结构,如平衡树(例如 AVL 树或红黑树),提供了对数据的有序存储和有效的查找、插入、删除操作,通常具有对数时间复杂度。哈希表在查找方面可能更快,但不保证数据的有序性。,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。
2024-07-29 15:27:47 708
原创 数据结构--哈希表
哈希函数的特点以及构造方法。冲突产生的原因以及处理冲突的方法。哈希查找的方法。练手题目1.已知哈希函数为H(k)=k%11,线性探测法解决冲突,根据哈希表的状态图,完成下面问题,并写出过程及结果。1)在上述哈希表的状态图中,空位置上标记空标志NULLFLAG,查找45;H(45)=45%11=1,地址被占用,线性探查下一地址;H1 =(H(45)+1)%11=2,占用;H2 =(H(45)+2)%11=3,查找成功。2)查找5,若5不存在,则将其插入;
2024-07-29 14:59:28 823
原创 Python爬虫入门02:Fiddler下载使用教程
Fiddler是一款广受好评的网络调试工具,它提供了一个平台来记录、检查和修改所有经过计算机的 HTTP/HTTPS 流量。它不仅支持桌面应用的网络调试,还能扩展到移动设备。Fiddler 是网络开发者和安全研究人员的瑞士军刀。通过本文的指南,你现在可以开始自己的网络抓包之旅,探索和理解网络请求的每一个细节。随着实践的深入,你将发现更多 Fiddler 的强大功能。
2024-07-28 19:14:58 1541
postman-win64-10.13
2024-07-17
MongoDB Atlas的关于云数据库服务、数据库管理、NoSQL数据库的文档
2024-07-05
小红书平台营销通案.pdf
2024-07-04
数据分析-电商数据分析
2024-05-11
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人