目标检测中One-stage的检测算法

目标检测可以理解为是物体识别和物体定位的综合,不仅仅要识别出物体属于哪个分类,更重要的是得到物体在图片中的具体位置。 目前的目标检测算法分为两类: 一类是two-stage,two-stage检测算法将检测问题划分为两个阶段,首先产生候选区域(region proposals),然后对候选区域...

2018-12-06 16:40:40

阅读数 548

评论数 0

目标检测中的Two-stage的检测算法

比较详细,作个备份 什么是目标检测(object detection): 目标检测(object detection),就是在给定的一张图片中精确找到物体所在的位置,并标注出物体的类别。所以,目标检测要解决的问题就是物体在哪里以及是什么的整个流程问题。 但是,在实际照片中,物体的尺寸变化范围...

2018-12-06 14:25:13

阅读数 543

评论数 0

Deformable-ConvNets 性能比较

Deformable-ConvNets GitHub地址https://github.com/msracver/Deformable-ConvNets   R-FCN演示:python ./rfcn/demo.py  *Deformable R-FCN*  640*496(time):...

2018-11-08 16:26:07

阅读数 69

评论数 0

Tensorflow里的tf.image.resize里的BUG!

原文:https://hackernoon.com/how-tensorflows-tf-image-resize-stole-60-days-of-my-life-aba5eb093f35 How Tensorflow’s tf.image.resize stole 60 days of my...

2018-11-07 10:34:40

阅读数 92

评论数 0

【模型压缩】Channel Pruning for Accelerating Very Deep Neural Networks算法笔记

转:https://blog.csdn.net/u014380165/article/details/79811779 论文:Channel Pruning for Accelerating Very Deep Neural Networks  论文链接:https://arxiv.org/ab...

2018-11-01 10:09:25

阅读数 145

评论数 0

深度学习模型压缩方法(5)-----Deep Compression

《Deep Compression: Compression Deep Neural Networks With Pruning, Trained Quantization And Huffman Coding 原作者基于Alex的代码:https://github.com/songhan/De...

2018-10-31 16:31:30

阅读数 329

评论数 0

深度学习模型压缩方法(4)-----模型蒸馏(Distilling)与精细模型网络

前言 在前两章,我们介绍了一些在已有的深度学习模型的基础上,直接对其进行压缩的方法,包括核的稀疏化,和模型的裁剪两个方面的内容,其中核的稀疏化可能需要一些稀疏计算库的支持,其加速的效果可能受到带宽、稀疏度等很多因素的制约;而模型的裁剪方法则比较简单明了,直接在原有的模型上剔除掉不重要的filte...

2018-10-30 11:37:51

阅读数 869

评论数 1

深度学习模型压缩方法(3)-----模型剪枝(Pruning)

前言 上一章,将基于核的稀疏化方法的模型压缩方法进行了介绍,提出了几篇值得大家去学习的论文,本章,将继续对深度学习模型压缩方法进行介绍,主要介绍的方向为基于模型裁剪的方法,由于本人主要研究的为这个方向,故本次推荐的论文数量较多,但都是非常值得一读的。 基于模型裁剪的方法 对以训练好的模型进行...

2018-10-30 11:36:51

阅读数 1051

评论数 1

深度学习模型压缩方法(2)-----核稀疏化

最近在研究深度学习的模型压缩,看到几篇总结的很不错的文章,记录一下。 转:https://blog.csdn.net/wspba/article/details/75671573   前言 目前在深度学习领域分类两个派别,一派为学院派,研究强大、复杂的模型网络和实验方法,为了追求更高的性能...

2018-10-30 11:32:56

阅读数 223

评论数 0

深度学习模型压缩方法(1)-----综述

1.研究背景 对模型预测精度无明显影响 压缩模型的参数数量、深度来降低模型空间复杂度  全连接层参数多,模型大小由全连接层主导 不显著提高训练时间复杂度,降低预测时间复杂度(计算量)  卷积层计算量大,计算代价由卷积操作主导 2.方法 2.1.更精细模型的设计 Aggrega...

2018-10-29 16:47:24

阅读数 801

评论数 3

DeepRebirth——从非权重层入手来进行模型压缩

前言 因为最近都在关注深度学习模型压缩相关的工作,所以今天给大家介绍的也是一篇关于模型压缩的方法。这是一篇非常有意思的工作,来自于三星研究院在ICLR2017上发表的论文:DeepRebirth: A General Approach for Accelerating Deep Neural N...

2018-10-29 16:44:57

阅读数 42

评论数 1

Keras笔记【7】卷积层(Convolutional Layers)

卷积层 Conv1D层 keras.layers.convolutional.Conv1D(filters, kernel_size, strides=1, padding='valid', dilation_rate=1, activation=None, use_bias=True, k...

2018-10-18 09:44:08

阅读数 448

评论数 0

Keras笔记【6】核心层(Core Layers)

目录 关于Keras的“层”(Layer) 核心层 Dense层 参数: 输入 输出 Activation层 参数 输入shape 输出shape Dropout层 参数 参考文献 Flatten层 例子 Reshape层 参数 输入shape 输出shape...

2018-09-06 10:53:29

阅读数 115

评论数 0

Keras笔记【5】--函数式模型API

函数式模型接口 Keras的函数式模型为Model,即广义的拥有输入和输出的模型,我们使用Model来初始化一个函数式模型 from keras.models import Model from keras.layers import Input, Dense a = Input(shap...

2018-09-02 19:31:20

阅读数 122

评论数 0

Keras笔记【4】--序贯模型的API

常用Sequential属性 model.layers是添加到模型上的层的list Sequential模型方法 add add(self, layer) 向模型中添加一个层 layer: Layer对象 pop pop(self) 弹出模型最后的一层,无返回值 compi...

2018-09-02 19:30:31

阅读数 78

评论数 0

Keras笔记【3】--关于Keras的模型类型

关于Keras模型 Keras有两种类型的模型,序贯模型(Sequential)和函数式模型(Model),函数式模型应用更为广泛,序贯模型是函数式模型的一种特殊情况。 两类模型有一些方法是相同的: model.summary():打印出模型概况,它实际调用的是keras.utils.p...

2018-09-02 19:29:22

阅读数 28

评论数 0

Keras笔记【2】--函数式(Functional)模型

Keras中文文档 --https://keras-cn.readthedocs.io/en/latest/ Keras函数式模型接口是用户定义多输出模型、非循环有向模型或具有共享层的模型等复杂模型的途径。一句话,只要你的模型不是类似VGG一样一条路走到黑的模型,或者你的模型需要多于一个的输出,...

2018-09-02 19:24:31

阅读数 117

评论数 0

Keras笔记【1】--序贯(Sequential)模型

参考Keras中文文档 https://keras-cn.readthedocs.io/en/latest/getting_started/sequential_model/   序贯模型时多个网络层的线性堆叠,可以理解成  先建立一个容器,然后往里面填东西,模型从头走到尾。 可以通过向Se...

2018-09-02 19:16:21

阅读数 142

评论数 0

人脸识别:《Arcface》论文详解

转载于 https://blog.csdn.net/Wuzebiao2016/article/details/81317154   写的很详细易懂。 前言 近年来随着硬件计算能力的大爆发,在高性能计算的支持下深度学习有了革命性的进步,在互联网大数据的保证下深度学习有了源源不断的动力,优秀的网...

2018-08-27 11:18:20

阅读数 1692

评论数 0

人脸检测:《MTCNN》论文详解&2016

Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks 作者链接:https://kpzhang93.github.io/MTCNN_face_detection_alignment/...

2018-08-11 15:19:08

阅读数 322

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭