关于solver设置的一些问题

转自:原文

solver算是caffe的核心的核心,它协调着整个模型的运作。caffe程序运行必带的一个参数就是solver配置文件。运行代码一般为

[plain]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. ./bulid/tools/caffe train -solver  *_solver.prototxt  

在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解。solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法。

 到目前的版本,caffe提供了六种优化算法来求解最优参数,在solver配置文件中,通过设置type类型来选择。

·        Stochastic Gradient Descent (type:"SGD"),

·        AdaDelta (type:"AdaDelta"),

·        Adaptive Gradient (type:"AdaGrad"),

·        Adam (type: "Adam"),

·        Nesterov’s Accelerated Gradient (type: "Nesterov") and

·        RMSprop (type:"RMSProp")

Solver的流程:

1.     设计好需要优化的对象,以及用于学习的训练网络和用于评估的测试网络。(通过调用另外一个配置文件prototxt来进行)

2.     通过forward和backward迭代的进行优化来跟新参数。

3.     定期的评价测试网络。 (可设定多少次训练后,进行一次测试)

4.     在优化过程中显示模型和solver的状态

在每一次的迭代过程中,solver做了这几步工作:

1、调用forward算法来计算最终的输出值,以及对应的loss

2、调用backward算法来计算每层的梯度

3、根据选用的slover方法,利用梯度进行参数更新

4、记录并保存每次迭代的学习率、快照,以及对应的状态。

接下来,我们先来看一个实例:

[plain]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. net: "examples/mnist/lenet_train_test.prototxt"  
  2. test_iter: 100  
  3. test_interval: 500  
  4. base_lr: 0.01  
  5. momentum: 0.9  
  6. type: SGD  
  7. weight_decay: 0.0005  
  8. lr_policy: "inv"  
  9. gamma: 0.0001  
  10. power: 0.75  
  11. display: 100  
  12. max_iter: 20000  
  13. snapshot: 5000  
  14. snapshot_prefix: "examples/mnist/lenet"  
  15. solver_mode: CPU  

接下来,我们对每一行进行详细解译:

[plain]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. net: "examples/mnist/lenet_train_test.prototxt"  

设置网络模型。每一个模型就是一个net,需要在一个专门的配置文件中对net进行配置,每个net由许多的layer所组成。注意的是:文件的路径要从caffe的根目录开始,其它的所有配置都是这样。

接下来第二行

test_iter: 100

这个要与test layer中的batch_size结合起来理解。mnist数据中测试样本总数为10000,一次性执行全部数据效率很低,因此我们将测试数据分成几个批次来执行,每个批次的数量就是batch_size。假设我们设置batch_size为100,则需要迭代100次才能将10000个数据全部执行完。因此test_iter设置为100。执行完一次全部数据,称之为一个epoch。

[plain]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. test_interval: 500  
测试间隔。也就是每训练500次,才进行一次测试。

[plain]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. base_lr: 0.01  
  2. lr_policy: "inv"  
  3. gamma: 0.0001  
  4. power: 0.75  

这四行可以放在一起理解,用于学习率的设置。只要是梯度下降法来求解优化,都会有一个学习率,也叫步长。base_lr用于设置基础学习率,在迭代的过程中,可以对基础学习率进行调整。怎么样进行调整,就是调整的策略,由lr_policy来设置。

lr_policy可以设置为下面这些值,相应的学习率的计算为:

  • - fixed:   保持base_lr不变.
  • - step:    如果设置为step,则还需要设置一个stepsize,  返回 base_lr * gamma ^ (floor(iter / stepsize)),其中iter表示当前的迭代次数
  • - exp:     返回base_lr * gamma ^ iter, iter为当前迭代次数
  • - inv:      如果设置为inv,还需要设置一个power, 返回base_lr * (1 + gamma * iter) ^ (- power)
  • - multistep: 如果设置为multistep,则还需要设置一个stepvalue。这个参数和step很相似,step是均匀等间隔变化,而multistep则是根据                                 stepvalue值变化
  • - poly:     学习率进行多项式误差, 返回 base_lr (1 - iter/max_iter) ^ (power)
  • - sigmoid: 学习率进行sigmod衰减,返回 base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))
multistep示例:

[plain]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. base_lr: 0.01  
  2. momentum: 0.9  
  3. weight_decay: 0.0005  
  4. # The learning rate policy  
  5. lr_policy: "multistep"  
  6. gamma: 0.9  
  7. stepvalue: 5000  
  8. stepvalue: 7000  
  9. stepvalue: 8000  
  10. stepvalue: 9000  
  11. stepvalue: 9500  
接下来的参数:
[plain]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. momentum :0.9  
上一次梯度更新的权重

[plain]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. type: SGD  
优化算法选择。这一行可以省掉,因为默认值就是SGD。总共有六种方法可选择,在本文的开头已介绍。

[plain]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. weight_decay: 0.0005  
权重衰减项,防止过拟合的一个参数。

[plain]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. display: 100  
每训练100次,在屏幕上显示一次。如果设置为0,则不显示。
[plain]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. max_iter: 20000  
最大迭代次数。这个数设置太小,会导致没有收敛,精确度很低。设置太大,会导致震荡,浪费时间。

[plain]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. snapshot: 5000  
  2. snapshot_prefix: "examples/mnist/lenet"  

快照。将训练出来的model和solver状态进行保存,snapshot用于设置训练多少次后进行保存,默认为0,不保存snapshot_prefix设置保存路径。

还可以设置snapshot_diff,是否保存梯度值,默认为false,不保存。

也可以设置snapshot_format,保存的类型。有两种选择:HDF5 和BINARYPROTO ,默认为BINARYPROTO

[plain]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. solver_mode: CPU  

设置运行模式。默认为GPU,如果你没有GPU,则需要改成CPU,否则会出错。

 注意:以上的所有参数都是可选参数,都有默认值。根据solver方法(type)的不同,还有一些其它的参数,在此不一一列举。

Solver processes,即求解器进程,是指在计算机中运行的用于解决数学问题的程序。根据具体的情况和需求,我们可以通过以下几个方面来设置Solver processes。 首先,我们需要确定所需的求解器进程的数量。这取决于问题的复杂性和计算机的性能。一般而言,对于较简单的问题和性能较差的计算机,可以选择较少的求解器进程。但对于较复杂的问题和性能较好的计算机,可以增加求解器进程的数量,以加快求解速度。 其次,我们需要考虑求解器进程的调度方式。有两种常见的调度方式:并发调度和并行调度。并发调度是指多个求解器进程在同一时间段内被调度执行,但只有一个进程在运行,其他进程处于等待状态。而并行调度是指多个求解器进程同时被调度执行,可以利用计算机的多核心或分布式计算资源,提高求解速度。 此外,我们还需要确定求解器进程之间的通信方式。通常情况下,求解器进程之间需要共享数据和结果,以协同完成问题的求解。可以选择使用共享内存或消息传递等方式进行进程间的通信。共享内存可以提高通信效率,但需要处理同步和互斥的问题;而消息传递则可以简化进程间的通信,但可能导致通信开销较大。 最后,我们还可以考虑使用一些优化方法来提高求解器进程的性能。例如,可以使用分布式计算框架或并行算法来加速求解过程,并充分利用计算资源。此外,还可以通过调整求解器的参数或使用合适的启发式算法,来优化求解过程的效果。 综上所述,设置Solver processes需要根据具体情况调整求解器进程的数量、调度方式、通信方式和使用相应的优化方法,以提高求解效率和准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值