算法
文章平均质量分 77
sherry_gp
追寻自己想要的,仅此而已。
展开
-
CUDA从入门到精通
CUDA从入门到精通(零):写在前面在老板的要求下,本博主从2012年上高性能计算课程开始接触CUDA编程,随后将该技术应用到了实际项目中,使处理程序加速超过1K,可见基于图形显示器的并行计算对于追求速度的应用来说无疑是一个理想的选择。还有不到一年毕业,怕是毕业后这些技术也就随毕业而去,准备这个暑假开辟一个CUDA专栏,从入门到精通,步步为营,顺便分享设计的一些经验教训,希望能转载 2016-06-21 15:13:22 · 1676 阅读 · 0 评论 -
光流Optical Flow介绍与OpenCV实现
转自:http://blog.csdn.net/zouxy09/article/details/8683859光流Optical Flow介绍与OpenCV实现zouxy09@qq.comhttp://blog.csdn.net/zouxy09 光流(optic flow)是什么呢?名字很专业,感觉很陌生,但本质上,我们是最熟悉不过的了。因转载 2016-03-13 11:28:31 · 656 阅读 · 0 评论 -
机器学习算法中文视频教程
本文转自:http://blog.csdn.net/zouxy09/article/details/10261535机器学习算法中文视频教程zouxy09@qq.comhttp://blog.csdn.net/zouxy09 在网上狂搜ReproducingKernel Hilbert Space的时候,找到了一个好东西。这个是李政軒Che转载 2016-03-09 09:17:43 · 574 阅读 · 0 评论 -
TLD视觉跟踪算法
本文转自:http://blog.sina.com.cn/s/blog_6163bdeb0102eh7b.htmlTLD算法好牛逼一个,这里有个视频,是作者展示算法的效果,http://www.56.com/u83/v_NTk3Mzc1NTI.html。下面这个csdn博客里有人做的相关总结,感觉挺好的,收藏了!下面有个Compressive Tracking的网址,提供的代码很少,但转载 2016-03-08 09:36:06 · 3013 阅读 · 0 评论 -
caffe特征可视化的代码样例
转自:http://www.cfanz.cn/index.php?c=article&a=read&id=174766简单来说,其实就是让神经网络正向传播一次,然后把某层的特征值给取出来,然后转换为图片保存。下面我提供一个demo,大家可以根据自己的需求修改。先看看我的demo的使用方法。visualize_features.bin net_转载 2016-03-18 17:36:16 · 1032 阅读 · 0 评论 -
深度卷积网络CNN与图像语义分割
转自:http://blog.csdn.net/xiahouzuoxin/article/details/47789361转载请注明出处: http://xiahouzuoxin.github.io/notes/html/深度卷积网络CNN与图像语义分割.html级别1:DL快速上手级别2:从Caffe着手实践级别3:读paper,网络Train起来级别4:Demo跑起来读转载 2016-03-18 16:37:55 · 1072 阅读 · 0 评论 -
【图像算法】图像特征:几何不变矩--Hu矩
一 原理 几何矩是由Hu(Visual pattern recognition by moment invariants)在1962年提出的,具有平移、旋转和尺度不变性。 定义如下:① (p+q)阶不变矩定义:② 对于数字图像,离散化,定义为: ③ 归一化中心矩定义: ④Hu矩定义转载 2016-03-06 10:26:20 · 1527 阅读 · 0 评论 -
Improved Dense Trajectory用法及源码分析
转自:http://blog.csdn.net/zackzhaoyang/article/details/50881114cvpr2014的Ivan Laptev大神的tutorial 中总结IDT+fisher coding是目前state-of-art的人体动作行为算法。现在基本涉及的论文效果都要跟iDT进行比对。在此写下自己对整个代码的理解,以方便学习。若有不当之处敬请指出。转载转载 2016-03-17 16:18:26 · 2096 阅读 · 5 评论 -
【OpenCV入门教程之十七】OpenCV重映射 & SURF特征点检测合辑
【OpenCV入门教程之十七】OpenCV重映射 & SURF特征点检测合辑时间 2014-06-15 11:38:42 毛星云(浅墨)的专栏原文 http://blog.csdn.net/poem_qianmo/article/details/30974513主题 OpenCV本系列文章由 @浅墨_毛星云 出品,转载请注明出处。转载 2016-03-17 16:14:27 · 743 阅读 · 0 评论 -
Dense Trajectory
转自:http://www.aiuxian.com/article/p-3173877.htmlDense Trajectory简称DT,是一种用来提取视频密集跟踪轨迹的算法;通常基于该轨迹进行取块计算descriptor。(一)DT计算1.概念:在视频序列中对每一帧的兴趣点进行跟踪就形成trajectory,若是对每一帧密集采样兴趣点进行跟踪就形成dens转载 2016-03-17 16:12:02 · 2386 阅读 · 1 评论 -
深度学习-----我整理了网上与此相关的资料
二、背景 机器学习(Machine Learning)是一门专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能的学科。机器能否像人类一样能具有学习能力呢? 机器学习虽然发展了几十年,但还是存在很多没有良好解决的问题: 例如:图像识别、语音识别、自然语言理解、转载 2016-03-03 18:27:37 · 1135 阅读 · 0 评论 -
【特征匹配】RANSAC算法原理与源码解析
转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/50217655 随机抽样一致性(RANSAC)算法,可以在一组包含“外点”的数据集中,采用不断迭代的方法,寻找最优参数模型,不符合最优模型的点,被定义为“外点”。在图像配准以及拼接上得到广泛的应用,本文将对RANSAC算法在OpenCV中角点误匹配对的检测中进行解析。转载 2016-03-23 16:07:20 · 2657 阅读 · 0 评论 -
梯度、梯度下降,随机梯度下降
申明:本文非笔者原创,原文转载自:http://www.cnblogs.com/549294286/archive/2012/12/13/2817204.html一、梯度gradienthttp://zh.wikipedia.org/wiki/%E6%A2%AF%E5%BA%A6在标量场f中的一点处存在一个矢量G,该矢量方向为f在该点处变化率最大的方向,转载 2016-02-29 10:36:56 · 490 阅读 · 0 评论 -
Deep Learning(深度学习)学习笔记整理系列
一、概述 Artificial Intelligence,也就是人工智能,就像长生不老和星际漫游一样,是人类最美好的梦想之一。虽然计算机技术已经取得了长足的进步,但是到目前为止,还没有一台电脑能产生“自我”的意识。是的,在人类和大量现成数据的帮助下,电脑可以表现的十分强大,但是离开了这两者,它甚至都不能分辨一个喵星人和一个汪星人。 图灵(图灵,大家都知道吧。转载 2016-02-29 21:43:05 · 6323 阅读 · 1 评论 -
PCA降维算法总结以及matlab实现PCA(个人的一点理解)
http://blog.csdn.net/watkinsong/article/details/8234766 转载请声明出处。by watkins songPCA的一些基本资料最近因为最人脸表情识别,提取的gabor特征太多了,所以需要用PCA进行对提取的特征进行降维。本来最早的时候我没有打算对提取的gabor特征进行降维,但是如果一个图像时6转载 2016-05-09 21:17:59 · 11180 阅读 · 1 评论 -
Clustering
最近在看聚类,整理相关链接以作以后查找。部分文章中含有实现代码。大牛漫谈clustering系列:http://blog.pluskid.org/?page_id=78美女博主:http://blog.csdn.net/abcjennifer/article/details/8198352 http://blog.csdn.net/abcjenn原创 2016-05-09 15:37:45 · 522 阅读 · 0 评论 -
Visualizing and Understanding Convolutional Networks笔记
Contents反卷积结构选取遮挡敏感性图片内特征相关性分析实验本文为20141024周报。在所有深度网络中,卷积神经网和图像处理最为密切相关,卷积网络在很多图片分类竞赛中都取得了很好的效果,但卷积网调参过程很不直观,很多时候都是碰运气。为此,卷积网络发明者Yann LeCun的得意门生Matthew Zeiler在2013年专门写了一篇论文,阐述了转载 2016-04-28 08:39:30 · 835 阅读 · 0 评论 -
特征点检测学习(surf算法)
转自:http://www.cnblogs.com/tornadomeet/archive/2012/08/17/2644903.html在上篇博客特征点检测学习_1(sift算法) 中简单介绍了经典的sift算法,sift算法比较稳定,检测到的特征点也比较多,其最大的确定是计算复杂度较高。后面有不少学者对其进行了改进,其中比较出名的就是本文要介绍的surf算法,surf的中文转载 2016-04-13 20:04:54 · 6194 阅读 · 0 评论 -
特征提取方法 SIFT,PCA-SIFT,GLOH,SURF
转自美女大神:http://blog.csdn.net/abcjennifer/article/details/7681718/在前面的blog中,我们已经讲了SIFT的原理,这里我们再详细讲解SIFT的变体:PCA-SIFT和GLOH。– Scale invariant feature transform (SIFT): Lowe, 2004.– PCA-转载 2016-04-13 14:55:56 · 605 阅读 · 0 评论 -
batch gradient descent(批量梯度下降) 和 stochastic gradient descent(随机梯度下降)
【Machine Learning实验1】batch gradient descent(批量梯度下降) 和 stochastic gradient descent(随机梯度下降)批量梯度下降是一种对参数的update进行累积,然后批量更新的一种方式。用于在已知整个训练集时的一种训练方式,但对于大规模数据并不合适。随机梯度下降是一种对参数随着样本训练,一个一个的及时upd转载 2016-03-28 10:16:28 · 950 阅读 · 0 评论 -
Opencv学习笔记(六)SURF学习笔记
转自:http://blog.csdn.net/crzy_sparrow/article/details/7392345 看了harris角点检测之后,开始研究SURF角点检测,发现挺复杂的,一时也只了解了大概,把了解的东西总结下,以便下次深入学习。 SURF角点检测算法是对SIFT的一种改进,主要体现在速度上,效率更高。它和SIFT的主要区别是图像多尺转载 2016-04-13 09:11:29 · 783 阅读 · 0 评论 -
Stochastic Gradient Descent收敛判断及收敛速度的控制
要判断Stochastic Gradient Descent是否收敛,可以像Batch Gradient Descent一样打印出iteration的次数和Cost的函数关系图,然后判断曲线是否呈现下降且区域某一个下限值的状态。由于训练样本m值很大,而对于每个样本,都会更新一次θ向量(权重向量),因此可以在每次更新θ向量前,计算当时状况下的cost值,然后每1000次迭代后,计算一次average转载 2016-03-25 17:34:40 · 2924 阅读 · 2 评论 -
机器学习中的相似性度量
转自:http://www.cnblogs.com/heaad/archive/2011/03/08/1977733.html在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。 本文的目的就是对常用的相似性度量作一个总结转载 2016-03-01 09:55:58 · 355 阅读 · 0 评论 -
合成全景图中计算机视觉技术的知识和原理
本文转自:http://www.guokr.com/post/445059/前一篇简单介绍了一下全景图的发展史和一个方便简洁的全景图合成软件。或许很多朋友会好奇其中的神秘,比如说为什么不同角度拍摄的图片拼接的时候可以自动对齐(略准确来讲也就是如何处理图片之间的仿射畸变和透视失真);如何能自动找到图片之间可以粘连的部分并且准确无误地拼接在一起;如何平衡图片之间光线色调的差异等等。其实每一步的转载 2016-03-01 09:29:07 · 1205 阅读 · 0 评论 -
Caffe 深度学习框架上手教程
摘要:Caffe是一个清晰而高效的深度学习框架,本文详细介绍了caffe的优势、架构,网络定义、各层定义,Caffe的安装与配置,解读了Caffe实现的图像分类模型AlexNet,并演示了CIFAR-10在caffe上进行训练与学习。Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作。Caffe是纯粹的C++/C转载 2016-03-03 16:33:44 · 2124 阅读 · 0 评论 -
Yoshua Bengio等大神传授:26条深度学习经验
转载自:http://www.csdn.net/article/2015-09-16/28257168月初的蒙特利尔深度学习暑期班,由Yoshua Bengio、 Leon Bottou等大神组成的讲师团奉献了10天精彩的讲座,剑桥大学自然语言处理与信息检索研究组副研究员Marek Rei参加了本次课程,在本文中,他精炼地总结了学到的26个有代表性的知识点,包括分布式表示,tricks转载 2016-03-03 14:35:52 · 573 阅读 · 0 评论 -
批量梯度下降与随机梯度下降
本文转自:http://my.oschina.net/hosee/blog/510076批量梯度下降与随机梯度下降发表于4个月前(2015-09-23 14:27) 阅读(78) | 评论(0) 2人收藏此文章, 我要收藏赞0摘要 批量梯度下降与随机梯度下降批量梯度下降 随机梯度下降目录[-]1、批量梯度下降(BGD)转载 2016-01-11 16:53:54 · 548 阅读 · 0 评论 -
BING
关于论文这两天翻了翻cvpr2014的论文,发现程明明老师关于Objectness Detecting的论文,于是拜读了一番。论文贡献了两个观点:目标有closed boundary,因此将窗口resize到8×8也能进行目标和背景的识别,这实际上降低了窗口的分辨率,resize到8×8目的是加速计算。这就相当于我们看路上走的人一样,在很远的地方即使我们没看清楚脸,只是看到一个轮廓转载 2016-01-26 08:18:06 · 2004 阅读 · 4 评论 -
CVPR2015
目录(?)[+] Part 1 - AlexNet 和 VGG-Net 摘要-今年的 CVPR 非常的火爆,总共有2800多人参与,相比去年增加了700多人,这与deep learning的异军突起是不无关系的。CVPR 2015 基本是 “the year of deep learning”,有大概70%的文章是关于deep learning的。今年的 CVPR转载 2016-01-25 15:06:39 · 1700 阅读 · 0 评论 -
几个视频中行为识别的底层特征及代码
1. 比较出名的是Ivan Laptev的 3D Harris,这是一个可执行文件,用起来比较方便,是Harris在3维空间的扩展,检测到特征点之后是用HOG和HOF进行表示。一共的特征维数是162维。点击这里进入下载界面。2. P. Dollar的cuboids角点检测,方法大致是用1D的gabor进行滤波。检测到角点之后,作者的实验表明直接用cuboids里面的梯度作为表示,然转载 2016-01-25 13:54:39 · 1409 阅读 · 0 评论 -
Action Recognition with Trajectory-Pooled Deep-Convolutional Descriptors
Action Recognition with Trajectory-Pooled Deep-Convolutional Descriptors这篇文章提出了一种新的视频表示方法,叫做trajectory-pooled deep-convolutional descriptor(TDD)。他拥有手工设计的特征和深度学习的特征的优点。用深度结构来学习有区分的卷积特征映射。然后用轨迹控制的pool转载 2016-01-25 13:44:33 · 1042 阅读 · 0 评论 -
灰度共生(共现)矩阵的求法
前段时间在写关于图像的作业时,出现了灰度共生矩阵的求法问题。于是就上网查资料发现不是很理想,翻书查阅也是不同的书籍出现的解法也是不一样,上别的课时老师也给我们讲了下,但是发现与我所看到的资料上讲的不一样。经总结思考后算是明白了,现在就班门弄斧分享下自己的心得。至于灰度共生矩阵的用途,我只知道它在检测纹理方面发挥着作用。不过即使不明白也没问题,在此呢,我们只是学习下如何求灰度转载 2015-12-04 11:19:24 · 4885 阅读 · 2 评论 -
神经网络浅讲:从神经元到深度学习
图1 人脑神经网络神经网络是一门重要的机器学习技术。它是目前最为火热的研究方向–深度学习的基础。学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术。本文以一种简单的,循序的方式讲解神经网络。适合对神经网络了解不多的同学。本文对阅读没有一定的前提要求,但是懂一些机器学习基础会更好地帮助理解本文。神经网络是一种模拟人脑的神经网络以期能够实转载 2016-01-21 17:40:27 · 2040 阅读 · 1 评论 -
hessian矩阵
在数学中,海赛矩阵是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵,此函数如下: 如果f所有的二阶导数都存在,那么f 的海赛矩阵即:H(f)ij(x) = DiDjf(x) 其中 ,即 (也有人把海色定义为以上矩阵的行列式) 海赛矩阵被应用于牛顿法解决的大规模优化问题。 混合偏导数和海赛矩阵的对称性原创 2016-01-19 15:17:14 · 1466 阅读 · 0 评论 -
极限优化:Haar特征的另一种的快速计算方法—boxfilter
在模式识别领域,Haar特征是大家非常熟悉的一种图像特征了,它可以应用于许多目标检测的算法中。与Haar相似,图像的局部矩形内像素的和、平方和、均值、方差等特征也可以用类似Haar特征的计算方法来计算。这些特征有时会频繁的在某些算法中使用,因此对它的优化势在必行。Boxfilter就是这样一种优化方法,它可以使复杂度为O(MN)的求和,求方差等运算降低到O(1)或近似于O(1)的复杂度,它的缺点是转载 2016-01-18 21:13:31 · 440 阅读 · 0 评论 -
卷积神经网络(CNN)学习笔记
转自:http://blog.csdn.net/huangbo10/article/details/24941079?utm_source=tuicool&utm_medium=referral起因从去年开始接触神经网络,觉得CNN结构很简单没什么难的,直到有一天被一位拿过信息竞赛金牌的学弟鄙视了……中期答辩之后不忙,于是我花了几天用MATLAB写了一个CNN,算是给自转载 2016-03-01 19:11:22 · 10004 阅读 · 0 评论 -
交叉验证(Cross Validation)方法思想简介
交叉验证(CrossValidation)方法思想以下简称交叉验证(Cross Validation)为CV.CV是用来验证分类器的性能一种统计分析方法,基本思想是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练集(train set),另一部分做为验证集(validation set),首先用训练集对分类器进行训练,在利用验证集来测试训练得到的模型(model),以转载 2016-01-13 11:04:22 · 596 阅读 · 0 评论 -
机器学习和深度学习相关的博客推荐
Deep Learning学习笔记:Deep learning:五十一(CNN的反向求导及练习)Deep learning:五十(Deconvolution Network简单理解)Deep learning:四十九(RNN-RBM简单理解) Deep learning:四十八(Contractive AutoEncoder简单理解)Deep lea转载 2016-01-14 10:06:04 · 891 阅读 · 0 评论 -
【Caffe】训练ImageNet模型
本文转自:http://blog.csdn.net/pirage/article/details/17553549Caffe训练ImageNet使用的是NIPS 2012 paper论文的算法。 1、准备数据。假设已经下载好数据集和验证集,存储路径为:/path/to/imagenet/train/n01440764/n01440764_1002转载 2016-03-03 13:52:24 · 938 阅读 · 0 评论 -
正则化方法:L1和L2 regularization、数据集扩增、dropout
本文转自:http://www.mamicode.com/info-detail-517504.html本文是《Neural networks and deep learning》概览 中第三章的一部分,讲机器学习/深度学习算法中常用的正则化方法。(本文会不断补充)正则化方法:防止过拟合,提高泛化能力在训练数据不够多时,或者overtraining时,常常会导致转载 2016-03-03 09:11:54 · 509 阅读 · 0 评论