opencv
文章平均质量分 82
sherry_gp
追寻自己想要的,仅此而已。
展开
-
OpenCV学习之CvMat的用法详解及实例
目 录 1.初始化矩阵:. 12.IplImage 到cvMat的转换. 13.cvArr(IplImage或者cvMat)转化为cvMat 14.图像直接操作. 25.cvMat的直接操作. 36.间接访问cvMat 47.修改矩阵的形状——cvReshape的操作. 58.计算色转载 2016-03-24 10:26:54 · 724 阅读 · 0 评论 -
OpenCV成长之路(9):特征点检测与图像匹配
OpenCV成长之路(特征点检测与图像匹配) 原文出处: Ronny 的博客(@RonnyYoung) 特征点又称兴趣点、关键点,它是在图像中突出且具有代表意义的一些点,通过这些点我们可以用来识别图像、进行图像配准、进行3D重建等。本文主要介绍OpenCV中几种定位与表示关键点的函数。一、Harris角点角点是图像中最基本的一种关键点,它转载 2016-03-24 11:23:24 · 1787 阅读 · 0 评论 -
Opencv学习笔记(六)SURF学习笔记
转自:http://blog.csdn.net/crzy_sparrow/article/details/7392345 看了harris角点检测之后,开始研究SURF角点检测,发现挺复杂的,一时也只了解了大概,把了解的东西总结下,以便下次深入学习。 SURF角点检测算法是对SIFT的一种改进,主要体现在速度上,效率更高。它和SIFT的主要区别是图像多尺转载 2016-04-13 09:11:29 · 783 阅读 · 0 评论 -
特征点检测学习(surf算法)
转自:http://www.cnblogs.com/tornadomeet/archive/2012/08/17/2644903.html在上篇博客特征点检测学习_1(sift算法) 中简单介绍了经典的sift算法,sift算法比较稳定,检测到的特征点也比较多,其最大的确定是计算复杂度较高。后面有不少学者对其进行了改进,其中比较出名的就是本文要介绍的surf算法,surf的中文转载 2016-04-13 20:04:54 · 6194 阅读 · 0 评论