- 博客(25)
- 收藏
- 关注
原创 TensorFlow基础(一)- Tensorflow介绍
目录TensorFlow发展历程Tensorflow的生态系统TensorFlow优势TensorFlow发展历程与tensorflow同时期的深度学习框架有caffe。tensorflow1.0入门:tensorflow2.0Tensorflow的生态系统TensorFlow优势GPU加速自动求导提供神经网络API...
2022-05-25 21:15:27 251
原创 pytorch基础(十一)- 生成对抗网络
目录生成对抗网络原理纳什均衡JS散度的缺陷EM距离生成对抗网络原理我们无法知道数据的真实分布是什么,如何用数学公式表达;纳什均衡JS散度的缺陷EM距离
2022-05-25 00:11:31 1931
原创 pytorch基础(十)-自编码器AutoEncoder
目录无监督学习AutoEncoderPCA和Auto-Encoderdenoising AutoEncoders 去噪自编码器Dropout AutoEncoderAdversarial AutoEncoder 对抗自编码器Variational AutoEncoder 变分自编码器Reparameterization VAE的隐变量的重参数化VAE生成模型AutoEncoder实战Variational AutoEncoder实战前面学习的:CNN便于处理位置相关性,对于时间维度的信号序列,使用RNN处
2022-05-10 01:12:11 5416 1
原创 pytorch基础(九)- 自定义数据集训练模型 和 迁移学习
目录Pokemon Dataset数据集加载自定义数据集数据预处理图像数据存储结构代码构建模型训练模型迁移学习收集、读取、预处理数据,模型搭建、训练。Pokemon Dataset数据集加载自定义数据集__len__()函数返回数据集的数量,限制数据集迭代次数;__getitem__索引样本;import torchfrom torch.utils.data import Dataset class NumberDataset(Dataset): def __init_
2022-05-09 01:50:06 1396
原创 pytorch基础(八)- 循环神经网络 RNN&LSTM
目录时间序列表示word embeddingone-hot编码和语义相似性编码序列的batch表示循环神经网络RNN网络结构RNN形式化RNN网络训练RNN layernn.RNNnn.RNNCell时间序列预测实战时间序列表示word embeddingpytorch没有办法直接表示文字或语音,pytorch只支持数值类型,不能支持string类型,那必须把string类型表示为数值类型,这种方法就叫做representation或者word embedding。one-hot编码和语义相似性编
2022-05-07 22:33:31 658
原创 pytorch基础(七)- 经典卷积网络的实现
目录CIFAR数据集pytorch直接加载CIFAR数据集LeNet实现ResNet实战CIFAR数据集CIFAR数据集一共包含10个大类(CIFAR-10),每一个大类下面再划分10个小类(CIFAR-100)。CIFAR-10中,每一个类别大概含有6k张图像,每张图像大小为32x32,所以CIFAR-10一共含有6w张图像,随机选择5w为训练集,1w为测试集;pytorch直接加载CIFAR数据集import torchfrom torchvision import datasets,tra
2022-05-06 17:54:27 86
原创 pytorch基础(六)- 卷积神经网络
目录卷积介绍卷积核和计算卷积输出特征图可视化nn.Conv2dF.conv2d池化层与采样池化与下采样上采样ReLUBatch NormalizationBN计算nn.BatchNorm1d(in_channels)nn.BatchNorm2d(in_channels)BN的优点经典卷积网络ImageNet图像分类任务LeNet-5AlexNet卷积介绍锐化:模糊:边缘检测:卷积核和计算卷积输出特征图可视化卷积神经网络低层的feature map观察的是低层的特征,比如图像中的角
2022-05-06 00:34:30 1632
原创 pytorch基础(五)- 过拟合、正则化、学习率衰减
目录模型的学习能力 model capacity欠拟合 underfitting过拟合 overfittingTrain-Val-Test划分Train-Test划分Train-Val-Test划分交叉验证正则化奥卡姆剃刀原理正则化的作用L1 Regularization / L2 RegularizationL2 RegularizationL1 Regularization动量与学习率衰减动量学习率衰减ReduceLROnPlateau管理optimizer 自动衰减学习率StepLR固定多少epoch
2022-04-28 22:08:47 980
原创 pytorch基础(四)- 神经网络与全连接
目录Logistic Regression交叉熵多分类问题Logistic Regression逻辑回归用于分类问题的预测。为什么分类问题不用以最小化准确率的目标来训练?可能会出现梯度消失或者梯度爆炸的问题。为什么要叫逻辑回归,而不是分类?二分类问题:多分类问题:多分类问题搭配softmaxsoftmax使预测较大的值相对更大交叉熵跟softmax匹配的loss交叉熵熵越高,代表信息越稳定,惊喜度越低。熵越低,代表不确定性高,惊喜度高。代码测试import
2022-04-27 23:36:39 2400
原创 pytorch基础(三)- 随机梯度下降
目录梯度介绍激活函数及其梯度Sigmoid/LogisticTanhReLULoss函数及其梯度均方差 MSEautograd.grad()求梯度loss.backward()求梯度Softmax交叉熵 CEL梯度介绍导数: 与梯度相近,针对一维函数,导数表示函数在x处的变换率;导数是一个标量,反应给定方向的函数值变换率,标量的长度反映了变换率的大小。偏微分: 函数对它自变量的变化率的描述程度,跟导数区别,导数方向可以随意指定,而偏微分只能是自变量的方向;函数有多少自变量就有多少偏微分;梯度: 函
2022-04-25 19:56:28 797
原创 Pytorch基础(二)- Tensor数据类型
目录python和Pytorch数据类型pytorch数据类型pytorch类型推断维度为0的标量标量判断维度为1的向量 Linear input维度为2的tensor Linear input batch维度为3的tensor RNN input维度为4的tensor CNN input其它的创建Tensor从numpy中引入 torch.from_numpy()从list中导入 torch.tensor()生成未初始化的tensor torch.empty()设置默认数据类型 torch
2022-04-07 22:53:51 5497
原创 Pytorch基础(一)- pytorch介绍,回归和分类问题
目录Pytorch发展及特点简单回归问题手写数字识别Pytorch发展及特点pytorch在torch7上进行开发的,2018年发布了第一个稳定的版本。google、TensorFlow基于theano构建。Keras后端为TensorflowFaceBook,Amazonpytorch借鉴了Chainer的API的设计规范。自然语言处理:AllenNLP计算机视觉:TorchVision图卷积神经网络:Fast.ai部署协议:onnx通过常用的网络层,堆叠一些复杂的神经网络。
2022-03-04 15:25:07 998
原创 数据分析(三)- pandas基础
目录为什么学习pandaspandas常用数据类型pandas之SeriesSeries的创建根据列表创建Series指定Series的索引根据字典创建Series修改Series的dtype类型Series的切片和索引Series的索引和值panda读取外部数据pandas之DataFrame创建DataFrame传入数组,创建DataFrame指定DataFrame的行索引index和列索引columns根据字典创建DataFrameDataFrame的描述信息DataFrame的索引为什么学习pan
2022-02-27 16:47:32 1322
原创 数据分析(二) - numpy
目录什么是numpynumpy基础numpy创建数组(矩阵)指定numpy数组的数据类型 array.astype()修改numpy数组的形状数组和数字的运算numpy数组和数组的计算numpy数组的广播原则轴 (axis)numpy数组的转置 (三种方法)numpy读取本地数据numpy索引和切片索引和切片numpy中数值的修改numpy中的布尔索引numpy中的三元运算符numpy中的clip(裁剪)numpy中的nan和inf,以及常用统计方法统计数组中有多少nannumpy中nan的注意点替换nan
2022-02-25 15:15:32 518
原创 数据分析(一)- 数据分析基础及matplotlib
目录为什么要学习数据分析什么是数据分析环境安装认识jupyter notebook数据分析:基础概念和环境matplotlib:绘图numpy:处理数值型数组pandas:在numpy的基础之上,除了能够处理数值型数组之外,还能处理字符串,列表,时间序列等等数据类型。为什么要学习数据分析从大量数据中,寻找规律,对大量数据进行统计和分析,统计出感兴趣的规律,供后续使用。绘图使我们更好的理解数据,从一堆数据里面找出经验或结论供他人使用。有岗位需求 爬虫+数据分析是python数据科学的基
2022-02-23 15:25:36 1343
原创 Python基础(九)- 模块(module)
目录模块化程序设计概念标准库模块(standard library)为什么要模块化编程模块化编程的流程模块的 API 和功能描述要点模块的创建和测试代码模块的导入import语句导入from ... import语句导入import 语句和 from...import 语句的区别__import__()动态导入模块的加载问题包package的使用包(package)的概念和结构导入包操作和本质用*导入包包内引用sys.path 和模块搜索路径模块发布和安装模块的本地发布本地模块的安装上传模块到PyPI让别人
2022-02-19 22:13:48 4962
原创 Python基础(八)- 文件操作(IO技术)
目录文本文件和二进制文件文件操作相关模块概述创建文件对象 open()文本文件的写入基本的文件写入操作常用编码介绍ASCIIISO8859-1GB2312,GBK,GB18030UnicodeUTF-8中文乱码问题write()/writelines()写入数据close()关闭文件流with 语句(上下文管理器)文本文件的读取二进制文件的读取和写入文件对象的常用属性和方法文件任意位置操作使用 pickle 序列化CSV 文件的操作csv.reader 对象和 csv 文件读取csv.writer 对象和
2022-02-14 20:29:04 878
原创 Python基础(七)- 异常处理
目录异常的本质异常的本质程序运行过程中,可能会遇到各种各样的问题,例如用户的输入不符合要求,尝试打开不存在的文件等,这些问题我们称之为异常Exception。异常指程序运行过程中出现的非正常现象,例如用户输入错误,除数为零,需要处理的文件不存在,数组访问下表越界等。所谓异常处理,就是指程序出现问题时依然可以正确执行剩余的程序,而不会因为异常而终止程序执行。python中......
2022-02-14 16:07:21 471
原创 Python基础(六)- 面向对象进阶
目录面向对象三大特征介绍继承语法格式类成员的继承和重写查看类的继承层次结构object根类dir()查看对象属性str()方法的重写多重继承MRO()super()获得父类定义多态特殊方法和重载运算符特殊属性对象的浅拷贝和深拷贝组合设计模式_工厂模式实现设计模式_单例模式实现工厂模式和单例模式的整合使用面向对象三大特征介绍封装(隐藏):隐藏对象的属性和实现细节,知对外提供必要的方法。继承:让子类拥有父类特征,提高了代码的重用性。从设计上是一种增量进化,原有父类设计不变的情况下,可以增加新的功能,或者改
2022-02-12 23:41:20 385
原创 Python基础(五) - 面向对象编程
python完全采用了面向对象的思想,是真正面向对象的编程语言,支持面向对象的基本操作,例如:继承、多态、封装。python中一切皆对象。python支持面向对象、面向过程、函数式编程等多种编程范式。目录面向对象和面向过程的区别类的定义__init__构造方法和__new__方法实例属性和实例方法实例属性实例方法函数和方法的区别实例对象的方法调用本质其他操作类对象类属性和类方法类属性类方法静态方法__del__()方法(析构函数)和垃圾回收机制__call__()方法和可调用对象面向对象和面向过程的区
2022-02-11 23:13:18 599
原创 Python基础(四)- 函数用法和底层分析
函数用法和底层分析函数简介函数基本概念python函数的分类函数的定义和调用函数的定义形参和实参文档字符串(函数的注释)返回值函数简介函数基本概念1.程序由任务组成,函数用于完成一个任务或者一个功能;2.函数是可重用的程序代码块,是代码复用的通用机制。python函数的分类1.内置函数类似于list(),str(),len()等可以直接调用的函数。2.标准库函数可以通过import语句导入库,然后使用其中定义的函数。3.第三方函数第三方提供的函数,可以通过import函数导入第三方库,
2022-02-07 20:59:24 630
原创 Python基础(三)- 控制语句
目录控制语句选择结构单分支选择结构条件表达式详解双分支选择结构三元条件运算符多分支选择结构选择结构嵌套循环结构while循环for 循环和可迭代对象遍历控制语句选择结构选择结构通过判断条件是否成立,来决定执行哪个分支。选择结构有多种形式,分为:单分支、双分支、多分支。单分支选择结构if 语句单分支结构的语法形式如下:if 条件表达式: 语句/语句块条件表达式:可以是逻辑表达式(and not or)、关系表达式(== != >= <= …) 、算术表达式等等;语句/语句块
2022-02-06 21:59:43 751
原创 Python基础(二)- 序列
目录序列列表创建列表列表元素的增加和删除列表元素的访问和计数列表的切片slice操作列表排序多维列表二维列表元组元组的创建元组元素的访问和计数序列序列是一种数据存储方式,序列中存储的是整数对象的地址么人不是整数对象的值。Python中常用序列结构有:字符串,列表,元组,字典,集合。列表用于存储关于任意数目,任意类型的数据集合。是内置可变序列,包含多个元素的有序连续的内存空间。字符串和列表都是序列类型,字符串是字符序列,列表是任何元素的序列。字符串的许多方法,在列表中也有类似的用法,几乎一模一样。
2022-02-05 22:00:33 1116
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人