数论概论 第二章 勾股数组

      本章主要讨论的是勾股数组,也就是关于满足a^2+b^2=c^2的三元组(a,b,c)的问题。
      其实,对于勾股数组的个数进行讨论并没有多大意义,因为已知a,b,c为勾股数组,那么显然有da,db,dc(d>0)也为勾股数组,因为(da)^2+(db)^2=d^2(a^+b^2)=d^2c^2=(dc)^2。
      因此着重研究的是关于本原勾股数组的问题,本原勾股数组即为a,b,c为勾股数组且满足a,b,c的最大公约数为1。
      对于本原勾股数组,显然a和b奇偶性不同只需要将a=2x+1,b=2y+1,c=2z代入a^2+b^2=c^2即可推出有公约数2。由于a和b奇偶性不同,那么显然c为奇数。
      那么最关心的是如何求出所有的本原勾股数组。
      如果将公式转化一下,得到a^2=c^2-b^2=(c+b)(c-b),那么显然有,c+b和c-b没有公因子,用反证法证明:
      如果d|(c+b)且d|(c-b),那么显然有d|((c+b)+(c-b))和d|((c+b)-(c-b))即d|2b且d|2c,因为在定义本原勾股数组的时候已经有了b和c的最大公约数是1的约定(虽然定义是a,b,c最大公约数是1,但是如果gcd(b,c)=d>1,显然有d|c不满足定义)。所以d要么为1,要么为2。但是如果d=2时,那么显然a,b,c均为偶数,不满足定义,那么d只能为1,证明了c+b和c-b没有公因子。
      因此,如果将a^2进行质因数分解,那么会有a=p1^t1*p2^t2*p3^t3...pn^tn,其中指数t1,t2,t3...tn为偶数(因为这样才能保证a^2开根号后为整数),又因为c+b和c-b没有公因数,所以c+b和c-b各取a分解后的其中某一些pk^tk,因此,c+b和c-b均为平方数。那么假设c+b=s^2,c-b=t^2,则有c=(s^2+t^2)/2,b=(s^2-t^2)/2,a=st,因此形如(st,(s^2-t^2)/2,(s^2+t^2)/2)的三元组为本原勾股数组。(其中s和t都是奇数,因为如果s和t中有且只有一个为奇数,那么显然(s^2+t^2)/2不会是整数,而如果两个数都是偶
  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 8
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值