(5)因数分解与算数基本定理

因数分解与算数基本定理

素数是这样的整数 p ≥ 2 p\geq2 p2,它的(正)因数仅有1与p。不是素数的整数 m ≥ 2 m\geq2 m2叫做合数。例如,

素 数 2 , 3 , 5 , 7 , 11 , 13 , ⋯ 素数 2,3,5,7,11,13,\cdots 23571113
合 数 4 , 6 , 8 , 9 , 10 , 12 , ⋯ 合数4,6,8,9,10,12,\cdots 46891012

引理7.1 令p是素数,假设p整除乘积ab,则p整除a或p整除b(或者p既整除a也整除b)。
证明已知 p ∣ a b p\mid ab pab。如果 p ∣ a p\mid a pa,则证明已完成;另一种情况 p ∤ a p\nmid a pa,则 g c d ( p , a ) = 1 gcd(p,a)=1 gcd(p,a)=1,因此我们可以根据线性方程定理得出:

p x + a y = 1 px+ay=1 px+ay=1

一定有整数解现在,方程两边同乘以b得:

p b x + a b y = b pbx+aby=b pbx+aby=b

显然, p ∣ p b x p\mid pbx ppbx,由于 p ∣ a b p\mid ab pab,所以 p ∣ a b y p\mid aby paby,因此p整除和

p b x + a b y pbx+aby pbx+aby
从而 p ∣ b p\mid b pb。这就完成了证明。
注意p一定是素数才能成立,是合数就不再成立了。

定理7.2(素数整除性质) 假设素数 p ∣ a 1 a 2 , a 3 ⋯ a r p\mid a_1a_2,a_3\cdots a_r pa1a2,a3ar,那 a 1 a 2 , a 3 ⋯ a r a_1a_2,a_3\cdots a_r a1a2,a3ar中至少有一个因数。
证明如果 p ∣ a 1 p\mid a_1 pa1,则定理证明完毕。否则,应用引理到乘积

a 1 ( a 2 a 3 ⋯ a r ) a_1(a_2a_3\cdots a_r) a1(a2a3ar)

得出 p ∣ a 2 a 3 ⋯ a r p\mid a_2a_3\cdots a_r pa2a3ar的结论。换句话说应用 a = a 1 , b = a 2 a 3 ⋯ a r a=a_1,b=a_2a_3\cdots a_r a=a1,b=a2a3ar的引理。我们已知 p ∣ a b p\mid ab pab,所以如果 p ∤ a p\nmid a pa,则引理表明p必整除b。继续这种过程最终必然可以得到p整除某个ai

**定理7.3(算数基本定理)**每个整数 n ≥ 2 n\ge2 n2可唯一分解成素数乘积

n = p 1 p 2 ⋯ p r n=p_1p_2\cdots p_r n=p1p2pr

证明算数基本定理实际上包含两个断言。
断言1数n可以以某种方式分解成素数乘积。
断言2仅有一种这样的因数分解(除因数重排外)。
先证明断言1。可以使用归纳证明。首先证明 n = 2 n=2 n=2时的断言,然后证明 n = 3 n=3 n=3时的断言, n = 4 n=4 n=4时断言,等等。我们将这种断言推广到N的每个数n断言1成立。也就是说每个数 n ≤ N n\le N nN可分解成素数的乘积。现在验证N+1成立。
有两种可能,一种N+1是素数,此时它本身已是素数。其次N+1是合数,则表明他可以分解为两个数 N + 1 = n 1 n 2 , 2 ≤ n 1 , n 2 ≤ N N+1=n_1n_2,2\le n_1,n_2\le N N+1=n1n2,2n1,n2N。但是已知 n 1 , n 2 n_1,n_2 n1,n2断言1成立,这是因为他们都小于N。从而

n 1 = p 1 p 2 p 3 ⋯ p r 与 n 2 = q 1 q 2 q 3 ⋯ q r n_1=p_1p_2p_3\cdots p_r 与 n_2=q_1q_2q_3\cdots q_r n1=p1p2p3prn2=q1q2q3qr

将这两个乘积乘起来得

N + 1 = n 1 n 2 = p 1 p 2 p 3 ⋯ p r q 1 q 2 q 3 ⋯ q r N+1=n_1n_2=p_1p_2p_3\cdots p_rq_1q_2q_3\cdots q_r N+1=n1n2=p1p2p3prq1q2q3qr

所以,N+1可分解为素数的乘积,这说明对N+1断言1成立。
下面证明断言2成立。假设能将n分解为两种形式的素数乘积,即

n = p 1 p 2 p 3 ⋯ p r = q 1 q 2 q 3 ⋯ q s n=p_1p_2p_3\cdots p_r=q_1q_2q_3\cdots q_s n=p1p2p3pr=q1q2q3qs

需要证明重排因数次序后分解是相同的。首先观察 p 1 ∣ n p_1\mid n p1n所以 p 1 ∣ q 1 q 2 q 3 ⋯ q s p_1\mid q_1q_2q_3\cdots q_s p1q1q2q3qs本章前面已证明的素数整除性质告诉我们p1必整除qi中的(至少)一个,所以如果重排这些qi可以使得 p 1 ∣ q 1 p_1\mid q_1 p1q1,但是q1也是素数,因而它的因数仅是1或q1,因此必得 p 1 = q 1 p_1=q_1 p1=q1
现在从等式两边消去p1(与q1相等)得等式

p 2 p 3 p 4 ⋯ r = q 2 q 3 q 4 ⋯ q s p_2p_3p_4\cdots _r=q_2q_3q_4\cdots q_s p2p3p4r=q2q3q4qs

重复上述过程直到所有的pi或所有的q1被消去。但是如果所有的pi被消去,则等式的左边等于1,所以不能余下任何qi,pi全消去同理。所以pi与q1的个数一定相等,所以

p 1 = q 1 , p 2 = q 2 , p 3 = q 3 , ⋯ p r = q s p_1=q_1,p_2=q_2,p_3=q_3,\cdots p_r=q_s p1=q1,p2=q2,p3=q3,pr=qs

这就完成了仅有一种表示方式将n表示成素数乘积的证明。

推论如果n本身不是素数,则必有整除n的素数 p ≤ n p\le \sqrt{n} pn
证明如果p是整除n的最小素数,则 n = p m , m ≥ q n=pm,m\ge q n=pm,mq,从而 n = p m ≥ p 2 n=pm\ge p^2 n=pmp2。两边取平方根得 n ≥ p \sqrt{n}\ge p n p,得证。

这样也给出了任何一个整数n表示成素数乘积的方法:
要将n表示成素数乘积,用小于等于 n \sqrt n n 的每个数(或正好每个素数) 2 , 3 , ⋯ 2,3,\cdots 23试除它,如果没有求得整除n的整数,则n本身是素数。否则求得的第一个因数是素数p。分解得 n = p m n=pm n=pm,然后对m重复这个过程。
当然这是一种效率很低的方法,只适用于不超过十位的数。虽然这个问题几乎不可能快速求解,但是我们以后会学习如何快速的判断一个数是不是合数。

本原勾股数组两两互素的证明

我们学习了素数整除性质,就可以使用这条性质证明

s t , s 2 − t 2 2 , s 2 + t 2 2 , s , t 为 奇 数 , s > t ≥ 1 , g c d ( s , t ) = 1 st,\frac{s^2-t^2}{2},\frac{s^2+t^2}{2},s,t为奇数,s>t\ge 1,gcd(s,t)=1 st,2s2t2,2s2+t2s,ts>t1gcd(s,t)=1

两两互素,即他们中的每一对都互素。
注意一下的证明过程是本人通过所学写的,可能不严谨,不正确,仅供参考,网上没找到官方证明
首先我们先观察三个数的奇偶性。
s,t都为奇数,显然st一定是奇数。
s 2 − t 2 2 = ( s − t ) ( s + t ) 2 \frac{s^2-t^2}{2}=\frac{(s-t)(s+t)}{2} 2s2t2=2(st)(s+t),其中 ( s − t ) , ( s + t ) (s-t),(s+t) (st),(s+t)都是偶数,所以 s 2 − t 2 2 \frac{s^2-t^2}{2} 2s2t2是一个偶数。
( s + t ) 2 2 = s 2 + t 2 2 + s t \frac{(s+t)^2}{2}=\frac{s^2+t^2}{2}+st 2(s+t)2=2s2+t2+st, ( s + t ) 2 2 \frac{(s+t)^2}{2} 2(s+t)2是偶数,st是奇数,那么 s 2 + t 2 2 \frac{s^2+t^2}{2} 2s2+t2一定是奇数。
综上我们可以得知三个数两两之间没有公因数2。
勾股数中的除2很麻烦,我们知道了他们没有公因数2,那么将三个数同乘2,此时我们只要证明 2 s t , s 2 − t 2 , s 2 + t 2 2st,s^2-t^2,s^2+t^2 2st,s2t2,s2+t2两两之间没有大于2的公因数,就可以证明 s t , s 2 − t 2 2 , s 2 + t 2 2 st,\frac{s^2-t^2}{2},\frac{s^2+t^2}{2} st,2s2t2,2s2+t2两两互素。
要证明这个我们可以一步一步推进,首先聚焦于 2 s t , s 2 − t 2 2st,s^2-t^2 2st,s2t2我们首先假设

g c d ( 2 s t , s 2 − t 2 ) = m , m > 2 , m 为 素 数 gcd(2st,s^2-t^2)=m,m>2,m为素数 gcd(2st,s2t2)=mm>2m

显然两个数如果有公因数那么一定可以找到素公因数,因为合数可以分解为素数的乘积。
根据素数整除性质,我们可以知道 m ∣ 2 s t m\mid2st m2st,且 g c d ( s , t ) = 1 gcd(s,t)=1 gcd(s,t)=1,那么可以得出 m ∣ s m\mid s ms m ∣ t m\mid t mt且二者不能同时成立。
s 2 − t 2 = ( s − t ) ( s + t ) s^2-t^2=(s-t)(s+t) s2t2=(st)(s+t),因为m不能同时整除s,t所以 m ∤ ( s − t ) , m ∤ ( s + t ) m\nmid (s-t),m\nmid(s+t) m(st),m(s+t),得出 m ∤ ( s 2 − t 2 ) m\nmid(s^2-t^2) m(s2t2),这与前提条件相冲突,那么我们可以知道 2 s t , s 2 − t 2 2st,s^2-t^2 2st,s2t2没有大于2的公因数。

我们再来看 2 s t , s 2 + t 2 2st,s^2+t^2 2st,s2+t2,同样我们假设

g c d ( 2 s t , s 2 + t 2 ) = m , m > 2 , m 为 素 数 gcd(2st,s^2+t^2)=m,m>2,m为素数 gcd(2st,s2+t2)=mm>2m

同上,我们可以知道 m ∣ 2 s t m\mid2st m2st,且 g c d ( s , t ) = 1 gcd(s,t)=1 gcd(s,t)=1,那么可以得出 m ∣ s m\mid s ms m ∣ t m\mid t mt且二者不能同时成立。
( s + t ) 2 = s 2 + t 2 + 2 s t (s+t)^2=s^2+t^2+2st (s+t)2=s2+t2+2st其中 m ∣ 2 s t , m ∣ s 2 + t 2 m\mid 2st,m\mid s^2+t^2 m2st,ms2+t2可知 m ∣ ( s + t ) 2 m\mid (s+t)^2 m(s+t)2,因为m不能同时整除s,t所以 m ∤ ( s + t ) m\nmid (s+t) m(s+t),得出 m ∤ ( s + t ) 2 m\nmid(s+t)^2 m(s+t)2,二者冲突,那么我们可以知道 2 s t , s 2 + t 2 2st,s^2+t^2 2st,s2+t2没有大于2的公因数。

最后,假设

g c d ( s 2 − t 2 , s 2 + t 2 ) = m , m > 2 , m 为 素 数 gcd(s^2-t^2,s^2+t^2)=m,m>2,m为素数 gcd(s2t2,s2+t2)=mm>2m

m ∣ ( s 2 − t 2 ) , m ∣ ( s 2 + t 2 ) m\mid (s^2-t^2),m\mid (s^2+t^2) m(s2t2),m(s2+t2) ( s 2 − t 2 ) + ( s 2 + t 2 ) = 2 s 2 , ( s 2 + t 2 ) − ( s 2 − t 2 ) = 2 t 2 (s^2-t^2)+(s^2+t^2)=2s^2,(s^2+t^2)-(s^2-t^2)=2t^2 (s2t2)+(s2+t2)=2s2,(s2+t2)(s2t2)=2t2得出 m ∣ s , m ∣ t m\mid s,m\mid t ms,mt,但这就与 g c d ( s , t ) = 1 gcd(s,t)=1 gcd(s,t)=1冲突,那么我们可以知道 s 2 − t 2 , s 2 + t 2 s^2-t^2,s^2+t^2 s2t2,s2+t2没有大于2的公因数。

综上我们证明了本原勾股数组公式得出的数两两互素,满足本原勾股数组的要求,证明可能重复或不严谨欢迎指正。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值