最先取到红球为胜问题(升级版)

这是一个概率问题,涉及三个人A、B和C轮流从装有n个红球和m个蓝球的袋子里取球。A和B的目标是首先取到红球,而C只取球不计胜负。如果A或B在所有球取完前取到红球,他们将获胜;否则B获胜。题目要求计算A获胜的概率,保留5位小数。解决方案包括枚举红球位置并递归判断不同情况,统计A胜出的情况数,最后计算概率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:

一个袋子里面有n个红球,m个蓝球,A,B,C三个人按顺序轮流取球,每次取一个球,A,B中谁先取中红球,谁获胜,C每次只是取走一个球,不计胜负,如果直到取完所有的球,A,B都没有取到红球,则B获胜。请问A获胜的概率是多少?

输入:两个整数n和m,分别代表红球和蓝球的个数

输出:A获胜的概率,结果保留5位小数

输入样例1:

1 1

输出样例1:

0.50000

输入样例2:

3 4

输出样例2:

0.62857

编程思想:

1.枚举出所有红球可能出现的位置,用1表示, 蓝球用0表示,记录所有的情况数;

2.判断第一个红球出现的位置,分三种情况:

  • i%3==0     A胜出
  • i%3==1     B胜出
  • i%3==2     从下一个位置开始,继续递归地判断下一个红球出现的位置

3.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值