试题 算法训练 数字游戏
资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
给定一个1~N的排列a[i],每次将相邻两个数相加,得到新序列,再对新序列重复这样的操作,显然每次得到的序列都比上一次的序列长度少1,最终只剩一个数字。
例如:
3 1 2 4
4 3 6
7 9
16
现在如果知道N和最后得到的数字sum,请求出最初序列a[i],为1~N的一个排列。若有多种答案,则输出字典序最小的那一个。数据保证有解。
输入格式
第1行为两个正整数n,sum
输出格式
一个1~N的一个排列
样例输入
4 16
样例输出
3 1 2 4
数据规模和约定
0<n<=10
思路:
蓝桥杯的题真的很难受,都不说清楚。。。评测还贼慢
这么简单一题全排列给👴整蒙了
题意是给一个输出一个1-n的序列(不能超过n,且不能重复,说白了就是全排列)
搜索用dfs就行了,计算结果简答dp一下就ok
代码:
#include <iostream>
#include <string>
#include <queue>
#include <algorithm>
using namespace std;
int n;
int res;
int d[15];
bool f[15]={false};
bool dfs(int step){
if(step==n+1){
int dd[15];
for(int i=1;i<=n;i++)
dd[i]=d[i];
//dp
for(int i=1;i<=n-1;i++)
for(int j=1;j<=n-i;j++)
dd[j]+=dd[j+1];
if(dd[1]==res){
for(int i=1;i<=n;i++)
cout<<d[i]<<" ";
return true;
}
else
return false;
}
for(int i=1;i<=n;i++){
if(f[i])
continue;
d[step]=i;
f[i]=true;
if(dfs(step+1))
return true;
f[i]=false;
}
return false;
}
int main()
{
cin>>n>>res;
dfs(1);
return 0;
}