- 博客(9)
- 收藏
- 关注
原创 回归综合案例
利用回归模型预测鲍鱼年龄数据集https://archive.ics.uci.edu/ml/datasets/Abalone数据集探索性分析将数据集读取为pandas的dataframe格式>>>import pandas as pd>>>import warnings>>>warnings.filterwarnings('ignore')>>>data=pd.read_csv(r"C:\Users\lenovo\Docu
2021-04-18 15:51:55 907 2
原创 Numpy的切片与索引
Numpy的切片与索引ndarray对象内容可以通过索引或切片来访问和修改。索引方法类型:字段访问;基本切片;高级索引。存取元素Numpy数组元素的存取方法和Python序列型数据的索引切片方法相同。import numpy as npa=np.arange(10)aa[5] #用整数作为下标可以获取数组中的某个元素a[3:5] #用范围作为下标可以获取数组的一个切片,包括a[3]不包括a[5]a[:-1]a[2:4]=100,101
2021-03-22 21:32:12 169
原创 Ndarray
Ndarray[N维数组对象]函数array()import numpy as np #导入numpy函数a=[1,2,3,4,5,6,7,8,9]print(a)a*2
2021-03-11 16:39:24 70
原创 Numpy数组属性
Numpy数组属性#创建多维数组c=no.array([[1,2,3],[4,5,6]])print(c)print(type(c))c*2print(c.ndim) #数字前方括号数目print(c.shape) #每去一层方括号后的元组数print(c.size) #元素个数print(c.dtype) #数据类型print(type(c))d=np.array([[[1,2,3],[4,5,6],[7,8,9]]])print(d)pri
2021-03-11 16:39:11 409
原创 Numpy数据类型
Numpy数据类型数据类型对象(dtype)构造语法: numpy.dtype(object,align,copy)object:被转换为数据类型的对象;align :如果为true,则向字段添加间隔,使其类似C的结构体;copy :生成dtype对象的新副本,如果为flase,结果是内建数据类型对象的引用。查看ndarray的数据类型:.dtype#声明一个dtype类型对象dt=np.dtype(np.int32) #与 dt=np.dtype(int)等价pr
2021-03-11 16:38:46 87
原创 Numpy数组创建
Numpy数组创建numpy.empty() 以随机的方式来创建数组a=np.empty([3,2],dtype=np.int32)print(a)numpy.zeros() 返回指定大小的数组,并且以0作为填充b=np.zeros([5,6],dtype=np.float32)print(b)numpy.zeros_like()c=np.array([[1,2,3],[4,5,6]],dtype=np.float32)print(c)d=np.zeros_like(c)
2021-03-11 16:38:09 256 1
原创 机器学习实践
一、 Numpy数据分析官网才是最好的课本Numpy官网:https://numpy.org/Numpy中文网:https://www.numpy.org.cn/Numpy基础Ndarray对象Numpy数据类型Numpy数组属性Numpy创建数组Numpy进阶Numpy中的切片Numpy高级索引Numpy中的广播Numpy中的数组操作Numpy中的字符串操作Numpy高级Numpy中的数学算法函数Numpy中的算法运算Numpy中的统计函数Numpy中的矩阵
2021-03-11 16:36:57 80
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人