感知机的matlab实现

该博客介绍了如何用MATLAB实现感知机算法进行线性分类。内容包括感知机的模型介绍,分类面的定义,以及MATLAB代码实现过程,通过高斯分布的点进行分类演示,最终得出分类结果并显示权重向量和分类迭代次数。
摘要由CSDN通过智能技术生成

感知机是二类分类的线性分类模型,其输入为实实例的特征向量,输出是实例的类别,两类分别取+1和-1。

输入空间到输出空间的函数为:f(x) = sign(w*x+b)

其中w,b感知机模型参数,w是权值(权向量),b是偏置,w*x是w和x的内积。sign是函数符号,输入为正时输出+1,输入为负时,输出为-1.

感知机是一种线性分类模型,属于判别模型。感知机模型的假设空间是定义在特征空间中的所有线性分类模型或线性分类器。


感知机的分类面: w*x+b = 0      是对应于特征空间的一个超平面S,其中W是超平面法向量,b是超平面截距,这个超平面将特征空间化为两半,每一边代表一类。

在训练感知机的时候首先初始化w,b,然后使用误分点来驱动超平面的更新

当一个x(i)被误分时,通过 w = w+L*y(i)*x(i) , b = b+L*y(i) 来更新w,b.   其中L是学习的步长(0<L<=1)'


这里在matlab中产生两类(X和Y,各60个点)高斯分布的点,通过感知机算法来寻找一个分类面。



load gaoData2;
x1 = x; %第一类点
x2 = y; %第一类点
plot(x1(1,:),x1(2,:),'ro',x2(1,:),x2(2,:),'b*');hold on 
y1 = ones(1,

多层感知机(Multilayer Perceptron,MLP)是一种经典的前馈神经网络模型,可用于分类和回归问题。在MATLAB中,可以使用神经网络工具箱中的函数和类来实现多层感知机。 对于分类问题,可以使用MATLAB的`patternnet`函数来创建一个多层感知机模型。然后,可以使用`train`函数来训练模型,并使用`sim`函数来进行预测。以下是一个简单的多层感知机MATLAB实现的示例代码: ```matlab % 创建多层感知机模型 net = patternnet(hiddenSizes); % 设置训练参数 net.trainParam.epochs = 100; % 训练迭代次数 net.trainParam.lr = 0.01; % 学习率 % 加载训练数据和标签 load('trainData.mat'); load('trainLabel.mat'); % 训练模型 net = train(net, trainData, trainLabel); % 加载测试数据 load('testData.mat'); % 进行预测 predictedLabel = sim(net, testData); % 输出预测结果 disp(predictedLabel); ``` 对于回归问题,可以使用MATLAB的`feedforwardnet`函数来创建一个多层感知机模型,并使用`trainlm`函数来训练模型。以下是一个简单的多层感知机MATLAB实现的示例代码: ```matlab % 创建多层感知机模型 net = feedforwardnet(hiddenSizes); % 设置训练参数 net.trainParam.epochs = 100; % 训练迭代次数 net.trainParam.lr = 0.01; % 学习率 % 加载训练数据和标签 load('trainData.mat'); load('trainLabel.mat'); % 训练模型 net = train(net, trainData, trainLabel); % 加载测试数据 load('testData.mat'); % 进行预测 predictedLabel = sim(net, testData); % 输出预测结果 disp(predictedLabel); ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值