考研数学一线性代数--常见的重要结论

记录去年考研期间学习数学一线性代数部分整理的一些重要结论。
线性代数我基础阶段跟的张宇,强化阶段跟的姜晓千。正如张宇老师所说,线性代数是一个章节之间联系十分紧密的学科,当给出一个矩阵时,我们要将其能够灵活的转化到向量组、秩序等不同的角度,才能在做题时更加得心应手,尤其是选择填空题。因此,线性代数记住一些常用的结论是非常有用的。
因为我都是在CSDN写博客,所以就把这篇文章分享在这里吧,也不知道合不合适。如果有幸被看到,希望能帮助到正在准备考试的你😊

文章目录

一、行列式

宽对角行列式(也称三对角行列式)

具体的推导可以应用差分方程或者递推,可以去B站找推导视频,有很多。
在这里插入图片描述
对于下方这个行列式,只要满足:a分解为两个数相加(即a1+a2=a),且a1*a2= b*c,即可使用上述公式计算。
在这里插入图片描述

再看一个例子,这里的2a可以分解为a+a,满足a*a=(a^2 )*1,可以用上述结论。
在这里插入图片描述

二、矩阵

(一)矩阵的迹

对角线元素之和

(二)主子式和顺序主子式

主子式: 从相同的行和列号中选取组成的子式

例如:
(1)对于一个七阶方阵,选取行号(如 1、3、7行),再选取相同行号的列号(1、3、7 列)
组成的三阶方阵。
(2)三阶方阵:
一阶主子式:a11 a22 a33
二阶主子式:
在这里插入图片描述
三阶主子式:A33 本身

顺序主子式:在上述的基础上,由该方阵的前k行和k列元素组成。
也就是说,对于一个三阶方阵,最多只能有三个顺序主子式: A11,A22,A33

(三)矩阵的转置T

仅转置独有的可加性:
在这里插入图片描述

(四)矩阵求逆

1)简单矩阵

①主对角、副对角矩阵:主对角直接求逆,副对角倒序求逆
在这里插入图片描述

2)分块矩阵

②主对角、副对角分块矩阵:主对角直接求逆,副对角倒序求逆
在这里插入图片描述
③三角、反三角分块阵
三角阵: 对角线求逆,副对角: 左乘同行,右乘同列,再加负号
反三角阵: 先对调,求副对角逆,然后按照: 左乘同行,右乘同列,再加负号
有点绕,看图:
在这里插入图片描述

3)利用伴随矩阵

④ 二阶矩阵
二阶矩阵伴随: 主对调,副变号。
利用公式,求出逆。
在这里插入图片描述

4)利用初等变换

[A|E] = [E|A-1]

(五)矩阵求 n次方

1)简单矩阵

①主对角线矩阵: 对角线上元素分别n次方
在这里插入图片描述
②主对角线分块矩阵: 对角线上元素分别n次方
在这里插入图片描述

2)秩一矩阵

An= tr(A)n-1 * A

(六)初等矩阵的性质(转置、逆、行列式)

来自:张宇线代基础9讲
在这里插入图片描述

(七)矩阵 逆、转置、伴随 三者共性

1)作用于矩阵无先后顺序

即可以任意:从括号内外交换位置
在这里插入图片描述

2)都适用于穿脱原则

在这里插入图片描述

3)m次幂无先后顺序

在这里插入图片描述

4)数字k倍(不同点)

在这里插入图片描述

(八)矩阵的秩(重要⭐️)

1)初等变换不改变矩阵的秩

由于 可逆矩阵 可以表示成:有限个初等矩阵的乘积
所以:
r(A) = r(PA) = r(AQ) = r(PAQ)

2)左乘列满秩或者右乘行满秩,不改变原来的秩

r(AnMaxB) = r(B)
r(ABnMax) = r(A)
可以从多个角度证明:
① 利用公式:
r(AB) >= r(B) + r(A) - n (n为A的列,B的行)
A列满秩,r(A) = n ===> r(AB) >= r(B)
矩阵秩越乘越小, r(AB) <= r(B)
综上r(AB)= r(B)

② 线性方程组: Bnxs X=0 与 AmxnBnxs X=0 同解
若BX=0 ===> ABX = 0
若ABX =0,A为列满秩 ==> BX=0 (A为列满秩,则Ax=0,只有零解。AB=0–>B=0)
所以二者同解,秩相同

③由上述结论可以证明下述两个重要结论:
A列满秩,矩阵C(C=AB) 的行向量组与B的行向量组等价。

  1. AB=C,C的行向量可由B的行向量表示,即r(B) = r(B/C)
  2. A列满秩,r(B) = r(C )

综上,单方面表示+秩相等==>三秩相等====>等价

同理,B行满秩,矩阵C(C=AB) 的列向量组与A的列向量组等价。

  1. C列可由A列线性表示
  2. r(A) = r(C )

3) r(A) = r(AT) = r(AAT) = r(ATA)

是用Ax=0和ATAx=0同解证出来的(证明见下方线性方程组,见后边特殊汇总也行)

4)A可相似对角化,r(A)为非0特征值的个数。

5)几个常见不等式

来自张宇-线性代数
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(九)行阶梯型与等价标准型

任何矩阵都可以使用初等行变换变为 行阶梯型、行最简阶梯型

任何矩阵都可以通过 初等变换(行+列) 变为 等价标准型(Er 0)

任何可逆矩阵都可以通过初等行变换变成单位矩阵(因为可逆矩阵的行最简阶梯型就已经是E了)

三、向量

(一)标准(单位)正交向量组、规范正交基

α1,α2,…,αs 满足:
①两两正交
②模为1

(二)向量组等价

1)定义:向量组 Ⅰ,Ⅱ 可以相互线性表示
2)判断条件:
①三秩相等: r(Ⅰ) = r(Ⅱ) = r(Ⅰ,Ⅱ)
②单方面表示 + r(Ⅰ) = r(Ⅱ)

四、线性方程组

(一)齐次方程解的特性

1)齐次的通解解答格式: k1ζ1 + k2ζ2 + … + kn-rζn-r 其中k1,k2,…kn-r为任意常数
2)若Aζ1=0 Aζ2=0,则 A(k1ζ1 + k2ζ2)=0. 即:齐次方程解的线性组合,仍是方程的解

(二)非齐次方程解的特性

1)非齐次的通解 = 齐次的通解 + 非齐次的特解
2)η1、η2是非齐次方程的解则: η1-η2 是对应齐次方程的解

(三)公共解求法

参考了某大佬的文章,原博客地址忘记了。

1)联立方程组求解

在这里插入图片描述

2)解出(1)的通解后,再带入(2)

3)分别求出(1)(2)的通解,令通解相等,解出公共解

注意最后一步找k,l的关系求法

  • 可以直接相等,得到关系
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 也可以移项组成新的线性方程组,得到关系
    在这里插入图片描述
    系数矩阵:(a1, a2, -b1, -b2) 初等行变换:
    在这里插入图片描述
    系数矩阵化简后,列出l1,l2,k1,k2 的等式(直接列x1-x2=0的等式),得到他们之间的关系
    在这里插入图片描述

(四) 证明四秩相等r(A) = r(AT) = r(AAT) = r(ATA)

1)r(A) = r(AT)
行列式行列等价,转置不影响秩,此项无需证明。
2)r(A) = r(ATA)
使用结论: 如果Ax=0与ATAx=0同解,则r(A) = r(ATA)
在这里插入图片描述

3)将2)中转置,使A = AT ,得到:r(AT) = r(AAT)

综上,四秩相等成立

五、特征值与特征向量、相似对角化

(一)n阶矩阵相似的两个充要条件

  • 有n个线性无关的特征向量
  • 对应于每个k重特征值都有k个线性无关的特征向量

(二)n阶矩阵相似的两个充分条件(能推出相似)

  • 实对称矩阵 一定可以相似对角化
  • 有n个不同的特征值 一定可以相似对角化

(三)特征值和秩的关系

A可相似对角化,r(A)为非0特征值的个数。

六、二次型、合同

(一)合同注意问题:

  1. 对称矩阵和非对称矩阵一定不合同(AB合同,一个为对称矩阵,另一个必为对称矩阵)
  2. 二次型f=xTAx以及二次型正定 均要求A在实对称矩阵范围

(二)变换为标准型两种形式:

  1. 可逆线性变换x=Cy(矩阵C一定要是可逆的,这个要实际去验证)
  2. 正交变换x=Qy

(三)标准型、规范型答题规范:

标准型、规范型都是经过变换得来的,因此问xTAx的标准型、规范型应当回答:
变换后的字母: 例如:y12+y22+y32

(四)线性变换答题规范

在这里插入图片描述

七、特殊汇总(重要⭐️)

(一)秩1矩阵

1)向量形式:

在这里插入图片描述

2)迹:

内积(a1b1+a2b2+a3b3+…+anbn) = 迹
tr(A) = bTa = aTb (都是数,你乘我,我乘你一样)
在这里插入图片描述

3)特征值:

在这里插入图片描述
在这里插入图片描述
证明:
因为秩r(A)=1,所有S=n-r(A)=n-1,存在a1,a2,…,an-1(n-1个特征向量)
满足: Aa1 = 0 = 0a1,
所以λ=0,至少是n-1重根,
又因为λ1+λ2+…+λn = 内积
所以至少有一个λ=内积,那剩下的λ至多为n-1重根。
综上,得证。

4)特征向量: A = abT

①tr(A)不为0
Aa = abTa = a(bTa) (括号里是个数)
所以l1 = bTa对应的特征向量为a
l2 = l3 = … = ln = 0,解(A-0E)x = 0; 即abT x=0(a为一维列向量,所以列满秩,左乘列满秩不改变方程的解abx=0与bx=0同解)
也就是bT x=0,可以得到n-1个线性无关的解。
②tr(A)=0
l1 = l2 = l3 = … = ln = 0
解bT x=0,可以得到n-1个线性无关的解。

5)相似对角化

tr(A)不为0,可以相似对角化

6)n次方

在这里插入图片描述

(二)正交矩阵

1)定义: AAT= ATA = E

2)充要条件:

  • AT = A -1
  • A的行(列)向量是规范正交基

3)特点:

①行列式只能为:-1或者1,所以正交矩阵一定可逆
②-1,*,T,n次方,AB都为正交矩阵
③实特征值为-1或者1
④如果|A|=-1:则至少有一个特征值为-1
⑤如果|A|=1且n为奇数:则至少有一个特征值为1[如果都为-1,则行列式(-1)2n+1为-1]

上述证明:
在这里插入图片描述

(三)实对称矩阵

1)定义: AT = A(转置等于本身)

2)一定可以相似对角化(可以正交相似对角化)

3)特征向量性质

属于不同特征值的特征向量一定正交
在这里插入图片描述

4)秩等于非零特征值个数

(四)分块矩阵

1)求逆

2)求n次方

3)求行列式

拉普拉斯展开式

4)求秩

对于三角阵: r(A)+r(B)≤r≤r(A)+r(B)+r(C )
在这里插入图片描述

5)求转置

在这里插入图片描述
在这里插入图片描述

6)分块矩阵服从广义的初等变换

服从左行右列

(五)若Ax =0的解均是Bx = 0的解五个结论

1)几何意义: B的解把A的所有解①包含在内

A是公共解,联想到方程组联立
在这里插入图片描述
也就是说,A的约束条件更大,解空间维数更低

2)A,B秩的关系:r(A)≥r(B)

3)Ax =0 和 (A/B)x=0 同解(是①的充要条件)

A的都是B的,说明A的解是二者公共的解,可以考虑到线性方程组同解/公共解:联立方程
在这里插入图片描述
证明:
在这里插入图片描述

4)A/B和A矩阵秩关系 (充要)

在这里插入图片描述

5)B的行向量组可由A的行向量组线性表示(充要)

这个结论前面也有证明

6)一定存在矩阵P,使得 B = PA(充要)

(六)向量组b1,b2,…bl可由a1,a2,…am线性表示(都是n维)

1)定义:

在这里插入图片描述

2)向量组秩:r(B)<=r(A)

高维能表示低维

3)方程组角度:Ax = B有解

4)[A]与]A,B]秩的关系:

秩:系数矩阵=增广矩阵
在这里插入图片描述

5)等价矩阵:B = AP

在这里插入图片描述
即存在矩阵P,使得:B = AP

6)矩阵列向量角度:

矩阵B[b1,b2,…bs]的列向量,均可由矩阵A[a1,a2,…am]的列向量线性表示

(七)AB=C <-----> C与A、B线性表示的理解

在这里插入图片描述

1)如何理解秩:

在这里插入图片描述
列向量线性表示:联想向量等价、单方面线性表示
行向量线性表示:联想线性方程组同解、单方向解

2)如何理解线性表示:

在这里插入图片描述
在这里插入图片描述
111

(八)空间中三平面关系转化为线性方程组的解

在这里插入图片描述
系数矩阵的一个行向量为其对应平面的法向量,平面相交意味着:
==>平面对应的法向量不成比例(不共线)
==>即系数矩阵行向量线性无关
==>即系数矩阵非零行的情况(系数矩阵秩的情况)
在这里插入图片描述
在这里插入图片描述

参考文章:用秩讨论线性方程组的解/三个平面的位置关系_平面互异-CSDN博客

(九)解方程组时如何设自由变量

向量线性表示时:(或者非齐次通解时)
直接设自由变量k,解非齐次方程

解线性方程组通解:
自由变量为1:解齐次方程组,得到基础解系
自由变量为0:解非齐次方程组,得到特解

解特征向量:
本质上是基础解系,
自由变量为1:解齐次方程组

(十)基础解系、线性方程组通解、(全部)特征向量 答题时区别

在这里插入图片描述

(十一)向量、矩阵 考研书写规范

向量: 小括号 (1,2,3)
矩阵: 也用小括号
在这里插入图片描述

末尾

强烈推荐姜晓千老师的线代强化课
里面总结了很多题型:例如aij=aji能推出什么结论,行满秩、列满秩的矩阵各有什么特性等,我本来是记在张宇基础线代9讲这本上来着,但是这本书被我考完试丢在老家了,因此也不放在这里总结了,觉得有帮助的可以自己去看看。
功不唐捐,玉汝于成,祝大家都能取得理想的成绩。


君子终日乾乾,夕惕若厉,无咎。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小雅痞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值