用秩讨论三个平面的位置关系/线性方程组的解
推荐视频:
完整梳理空间平面位置关系与线性方程组解的判定
3个平面8种位置关系,高等数学,线性代数
线性方程组
下图中三个方程对应三个平面
线性方程组的增广矩阵形式
系数矩阵的一个行向量为其对应平面的法向量,平面相交意味着平面对应的法向量不成比例,即系数矩阵行向量线性无关,由此得到系数矩阵非零行的情况(系数矩阵秩的情况)
Step1:方程组有解还是无解,若方程组有解(包括无穷多解、唯一解)则 r ( A ) = r ( A ˉ ) r(A)=r(\bar{A}) r(A)=r(Aˉ),若无解,则 r ( A ) ≠ r ( A ˉ ) r(A)\neq r(\bar{A}) r(A)=r(Aˉ)
Step2:三个平面法向量的平行与否,若三个平面相交于一点,则 r ( A ) = 3 r(A)=3 r(A)=3,若至少有两个平面相交于一线,则 r ( A ) = 2 r(A)=2 r(A)=2,若三平面平行,则 r ( A ) = 1 r(A)=1 r(A)=1
Step3:由于增广矩阵是系数矩阵多一列,所以 r ( A ˉ ) = r ( A ) + 1 r(\bar{A})=r(A)+1 r(Aˉ)=r(A)+1
① r ( A ) r(A) r(A)可以理解为平面法向量张成的维度
② r ( A ˉ ) r(\bar{A}) r(Aˉ)表明至少有几个平面互异(不重合),但小于等于方程个数n(平面个数)
③ 当 r ( A ) ≠ r ( A ˉ ) r(A)\neq r(\bar{A}) r(A)=r(Aˉ)时, r ( A ˉ ) = r ( A ) + 1 r(\bar{A})=r(A)+1 r(Aˉ)=r(A)+1
技巧:
根据①判断 r ( A ) r(A) r(A),方程组有无解判断 r ( A ) r(A) r(A)是否等于 r ( A ˉ ) r(\bar{A}) r(Aˉ),若 r ( A ) ≠ r ( A ˉ ) r(A)\neq r(\bar{A}) r(A)=r(Aˉ)则用③得 r ( A ˉ ) r(\bar{A}) r(Aˉ)
下图为三个平面法向量的关系
由上述三步确定 r ( A ) r(A) r(A)、 r ( A ˉ ) r(\bar{A}) r(Aˉ) 的具体情况
该方程组有无解,表现为三个平面有无公共交点,有几个解表现于三个平面有几个公共交点
情况一:
r
(
A
ˉ
)
=
r
(
A
)
=
3
r(\bar{A})=r(A)=3
r(Aˉ)=r(A)=3【方程个数3
=
=
= 未知数个数3】,方程组有唯一解,三平面交于一点
三个平面相交,则
r
(
A
)
=
3
r(A)=3
r(A)=3
情况二: r ( A ˉ ) = 3 r(\bar{A})=3 r(Aˉ)=3, r ( A ) = 2 r(A)=2 r(A)=2, r ( A ˉ ) ≥ r ( A ) r(\bar{A})\ge r(A) r(Aˉ)≥r(A),方程组无解【因为 0 z 3 = d 3 0z_3=d_3 0z3=d3 无解】,三平面无公共交点,又因 r ( A ) = 2 r(A)=2 r(A)=2 则必有两平面相交
增广矩阵第3行可能与第1行或第2行成比例,可能不是0,这里写为0只是为了明显地看出秩为几
三平面无公共交点有两种情况
1.三平面两两相交,但无公共交点,故方程组无解
2.三平面中有两平面相交,另一平面与其中一平面平行,但无公共交点,故方程组无解
情况三: r ( A ˉ ) = r ( A ) = 2 < n = 3 r(\bar{A})=r(A)=2\lt n=3 r(Aˉ)=r(A)=2<n=3(方程个数2 < \lt < 未知数个数n=3 ),方程组有无穷多个解【因为 0 z 3 = 0 0z_3=0 0z3=0】,三平面有无穷多个公共交点,又因 r ( A ) = 2 r(A)=2 r(A)=2 则必有两平面相交,又因 r ( A ˉ ) = 2 r(\bar{A})=2 r(Aˉ)=2 说明三个平面中至少有两个平面互异
增广矩阵第3行可能与第1行或第2行成比例,可能不是0,这里写为0只是为了明显地表示秩
两个平面无公共交点有两种情况
1.两平面相交,另一个平面通过该交线,三平面互异,因三平面交于一线,交线上有无数多个点,故此种情况下方程组有无穷多个解
两平面相交,则
r
(
A
)
≥
2
r(A)\geq 2
r(A)≥2
2.两平面相交,另一个平面与其中一平面重合,两平面互异,因三平面(其中两平面重合)交于一线,交线上有无数多个点,故此种情况下方程组有无穷多个解
情况四: r ( A ˉ ) = 2 r(\bar{A})=2 r(Aˉ)=2, r ( A ) = 1 r(A)=1 r(A)=1, r ( A ˉ ) > r ( A ) r(\bar{A})\gt r(A) r(Aˉ)>r(A),方程组无解【因为 0 z 2 = d 2 0z_2=d_2 0z2=d2无解】,三平面不相交,又因 r ( A ) = 1 r(A)=1 r(A)=1,故没有两个平面相交,因而三平面平行,再因 r ( A ˉ ) = 2 r(\bar{A})=2 r(Aˉ)=2,故三平面至少两平面互异
增广矩阵第2、3行可能与第1行成比例,可能不是0,这里写为0只是为了明显地表示秩
三平面至少两平面互异有两种情况
1.三平面平行,且三平面互异,三平面无公共交点,故方程组无解
2.三平面平行,其中有两平面重合,同时有两平面互异,三平面(其中两平面重合)无公共交点,故方程组无解
情况五: r ( A ˉ ) = r ( A ) = 1 < n = 3 r(\bar{A})=r(A)=1\lt n=3 r(Aˉ)=r(A)=1<n=3,方程组有无穷多个解,三平面有无穷多个公共交点。由 r ( A ) = 1 r(A)=1 r(A)=1知,没有两平面相交。而 r ( A ˉ ) = 1 r(\bar{A})=1 r(Aˉ)=1 说明三个平面中至少有一个平面互异,那有两个情况,2个平面互异或3个平面互异,而这两种情况均与三平面有无穷多个交点相矛盾,故三平面重合
增广矩阵第2、3行可能与第1行成比例,可能不是0,这里写为0只是为了明显地表示秩