SpringBoot依赖版本冲突问题

以下各版本都是兼容的并且在用Java进行网站开发时都有可能用到。适用于SpringBoot项目。

SpringBoot

特别注意框架版本不要使用太高的

<parent>
	<groupId>org.springframework.boot</groupId>
	<artifactId>spring-boot-starter-parent</artifactId>
	<version>2.7.3</version>
	<relativePath/> <!-- lookup parent from repository -->
</parent>
	<dependencies>

        <!--Spring Boot的核心starter,提供了基本的Spring框架支持。-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter</artifactId>
        </dependency>

        <!--Spring Boot的WebSocket支持starter,用于在Spring应用中实现WebSocket功能。-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-websocket</artifactId>
        </dependency>

        <!--spring-boot-starter-test: Spring Boot的测试starter,包含了各种测试所需的依赖。-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>

        <!--hutool-all: Hutool是一个Java工具包,提供了很多实用的工具类,用于简化Java开发。-->
        <dependency>
            <groupId>cn.hutool</groupId>
            <artifactId>hutool-all</artifactId>
            <version>5.8.16</version>
        </dependency>

        <!--mybatis-plus-generator: MyBatis Plus的代码生成器,用于自动生成MyBatis Mapper和Entity类。-->
        <dependency>
            <groupId>com.baomidou</groupId>
            <artifactId>mybatis-plus-generator</artifactId>
            <version>3.4.1</version>
        </dependency>

        <!--mybatis-plus-boot-starter: MyBatis Plus的Spring Boot Starter,提供了集成MyBatis Plus的功能。-->
        <dependency>
            <groupId>com.baomidou</groupId>
            <artifactId>mybatis-plus-boot-starter</artifactId>
            <version>3.4.1</version>
        </dependency>

        <!--mysql-connector-java: MySQL数据库的官方JDBC驱动程序,用于连接MySQL数据库。-->
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <scope>runtime</scope>
        </dependency>

        <!--spring-boot-starter-web: Spring Boot的Web功能starter,包含了构建Web应用所需的依赖。-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
            <scope>compile</scope>
        </dependency>

        <!--mybatis-spring-boot-starter: MyBatis的Spring Boot Starter,用于集成MyBatis到Spring Boot应用中。-->
        <dependency>
            <groupId>org.mybatis.spring.boot</groupId>
            <artifactId>mybatis-spring-boot-starter</artifactId>
            <version>2.2.0</version>
        </dependency>

        <!--lombok: Lombok是一个Java库,可以通过注解来自动生成Java Set Get方法,简化Java开发。-->
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.18.20</version>
        </dependency>

        <!--fastjson: 阿里巴巴开源的JSON解析库,用于在Java中处理JSON数据。-->
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.76</version>
        </dependency>

        <!--commons-lang: Apache Commons Lang库,提供了各种常用的Java工具类。-->
        <dependency>
            <groupId>commons-lang</groupId>
            <artifactId>commons-lang</artifactId>
            <version>2.6</version>
        </dependency>

        <!--druid-spring-boot-starter: 阿里巴巴开源的Druid数据库连接池的Spring Boot Starter,用于集成Druid到Spring Boot应用中。-->
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>druid-spring-boot-starter</artifactId>
            <version>1.2.1</version>
        </dependency>

        <!--aspectjrt: AspectJ运行时库,用于支持在Java应用中使用AspectJ进行面向切面编程。-->
        <dependency>
            <groupId>org.aspectj</groupId>
            <artifactId>aspectjrt</artifactId>
            <version>1.9.4</version>
        </dependency>

        <!--aspectjweaver: AspectJ编织器,用于在Java应用中实现AOP编织。-->
        <dependency>
            <groupId>org.aspectj</groupId>
            <artifactId>aspectjweaver</artifactId>
            <version>1.9.4</version>
        </dependency>

        <!--jjwt: Java JWT(JSON Web Token)库,用于在Java应用中实现JWT认证和授权。-->
        <dependency>
            <groupId>io.jsonwebtoken</groupId>
            <artifactId>jjwt</artifactId>
            <version>0.9.1</version>
        </dependency>

        <!--aliyun-sdk-oss: 阿里云开放存储服务(OSS)的Java SDK,用于在Java应用中访问阿里云OSS。-->
        <dependency>
            <groupId>com.aliyun.oss</groupId>
            <artifactId>aliyun-sdk-oss</artifactId>
            <version>3.10.2</version>
        </dependency>

        <!--jaxb-api: Java Architecture for XML Binding(JAXB)API,用于在Java应用中进行XML数据和Java对象之间的转换。-->
        <dependency>
            <groupId>javax.xml.bind</groupId>
            <artifactId>jaxb-api</artifactId>
            <version>2.3.1</version>
        </dependency>

        <!--poi: Apache POI库,用于在Java应用中操作Microsoft Office格式的文档。-->
        <dependency>
            <groupId>org.apache.poi</groupId>
            <artifactId>poi</artifactId>
            <version>3.16</version>
        </dependency>

        <!--poi-ooxml: Apache POI的OOXML模块,用于在Java应用中处理Office Open XML格式的文档。-->
        <dependency>
            <groupId>org.apache.poi</groupId>
            <artifactId>poi-ooxml</artifactId>
            <version>3.16</version>
        </dependency>

        <!--wechatpay-apache-httpclient: 微信支付的Apache HttpClient库,用于在Java应用中访问微信支付API。-->
        <dependency>
            <groupId>com.github.wechatpay-apiv3</groupId>
            <artifactId>wechatpay-apache-httpclient</artifactId>
            <version>0.4.8</version>
        </dependency>

        <!--springfox-spring-web: Springfox对Spring Web MVC应用的支持库,用于在Spring应用中实现Swagger UI。-->
        <dependency>
            <groupId>io.springfox</groupId>
            <artifactId>springfox-spring-web</artifactId>
            <version>3.0.0</version>
        </dependency>

        <!--spring-boot-configuration-processor: Spring Boot配置处理器,用于在编译时生成配置元数据文件。-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-configuration-processor</artifactId>
            <optional>true</optional>
        </dependency>
        
        <!--velocity-engine-core: Apache Velocity模板引擎的核心库,用于在Java应用中解析和渲染Velocity模板。-->
        <dependency>
            <groupId>org.apache.velocity</groupId>
            <artifactId>velocity-engine-core</artifactId>
            <version>2.0</version>
        </dependency>

        <!--tomcat-embed-core: Tomcat嵌入核心库,用于在Spring Boot应用中嵌入Tomcat作为Web服务器。-->
        <dependency>
            <groupId>org.apache.tomcat.embed</groupId>
            <artifactId>tomcat-embed-core</artifactId>
            <version>9.0.78</version>
        </dependency>
        
        <!-- spring-boot-starter-data-redis: 集成redis -->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-redis</artifactId>
        </dependency>

        <!-- Jedis: 让Java应用程序通过Redis的协议与Redis服务器进行通信。-->
        <dependency>
            <groupId>redis.clients</groupId>
            <artifactId>jedis</artifactId>
        </dependency>
        
    </dependencies>

以上为JDK8常用pom文件依赖和工具包

package com.test; import java.awt.image.BufferedImage; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.IOException; public class B { public static void main(String[] args) { File file = new File("c:\\a.jpg"); FileInputStream is = null; try { is = new FileInputStream(file); } catch (FileNotFoundException e2) { e2.printStackTrace(); // return rect; } BufferedImage sourceImg = null; try { sourceImg = javax.imageio.ImageIO.read(is); } catch (IOException e1) { e1.printStackTrace(); // return rect; } System.out.println("width = " + sourceImg.getWidth() + "height = " + sourceImg.getHeight()); } } package com.test; import java.awt.image.BufferedImage; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.IOException; public class B { public static void main(String[] args) { File file = new File("c:\\a.jpg"); FileInputStream is = null; try { is = new FileInputStream(file); } catch (FileNotFoundException e2) { e2.printStackTrace(); // return rect; } BufferedImage sourceImg = null; try { sourceImg = javax.imageio.ImageIO.read(is); } catch (IOException e1) { e1.printStackTrace(); // return rect; } System.out.println("width = " + sourceImg.getWidth() + "height = " + sourceImg.getHeight()); } } package com.test; import java.awt.image.BufferedImage; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.IOException; public class B { public static void main(String[] args) { File file = new File("c:\\a.jpg"); FileInputStream is = null; try { is = new FileInputStream(file); } catch (FileNotFoundException e2) { e2.printStackTrace(); // return rect; } BufferedImage sourceImg = null; try { sourceImg = javax.imageio.ImageIO.read(is); } catch (IOException e1) { e1.printStackTrace(); // return rect; } System.out.println("width = " + sourceImg.getWidth() + "height = " + sourceImg.getHeight()); } } package com.test; import java.awt.image.BufferedImage; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.IOException; public class B { public static void main(String[] args) { File file = new File("c:\\a.jpg"); FileInputStream is = null; try { is = new FileInputStream(file); } catch (FileNotFoundException e2) { e2.printStackTrace(); // return rect; } BufferedImage sourceImg = null; try { sourceImg = javax.imageio.ImageIO.read(is); } catch (IOException e1) { e1.printStackTrace(); // return rect; } System.out.println("width = " + sourceImg.getWidth() + "height = " + sourceImg.getHeight()); } }
视频人脸识别,取代jmf。。。 Introduction JavaCV uses wrappers from the JavaCPP Presets of commonly used libraries by researchers in the field of computer vision (OpenCV, FFmpeg, libdc1394, PGR FlyCapture, OpenKinect, librealsense, CL PS3 Eye Driver, videoInput, ARToolKitPlus, and flandmark), and provides utility classes to make their functionality easier to use on the Java platform, including Android. JavaCV also comes with hardware accelerated full-screen image display (CanvasFrame and GLCanvasFrame), easy-to-use methods to execute code in parallel on multiple cores (Parallel), user-friendly geometric and color calibration of cameras and projectors (GeometricCalibrator, ProCamGeometricCalibrator, ProCamColorCalibrator), detection and matching of feature points (ObjectFinder), a set of classes that implement direct image alignment of projector-camera systems (mainly GNImageAligner, ProjectiveTransformer, ProjectiveColorTransformer, ProCamTransformer, and ReflectanceInitializer), a blob analysis package (Blobs), as well as miscellaneous functionality in the JavaCV class. Some of these classes also have an OpenCL and OpenGL counterpart, their names ending with CL or starting with GL, i.e.: JavaCVCL, GLCanvasFrame, etc. To learn how to use the API, since documentation currently lacks, please refer to the Sample Usage section below as well as the sample programs, including two for Android (FacePreview.java and RecordActivity.java), also found in the samples directory. You may also find it useful to refer to the source code of ProCamCalib and ProCamTracker as well as examples ported from OpenCV2 Cookbook and the associated wiki pages. Please keep me informed of any updates or fixes you make to the code so that I may integrate them into the next release. Thank you! And feel free to ask questions on the mailing list if you encounter any problems with the software! I am sure it is far from perfect... Downloads To install manually the JAR files, obtain the following archives and follow the instructions in the Manual Installation section below. JavaCV 1.3.3 binary archive javacv-platform-1.3.3-bin.zip (212 MB) JavaCV 1.3.3 source archive javacv-platform-1.3.3-src.zip (456 KB) The binary archive contains builds for Android, Linux, Mac OS X, and Windows. The JAR files for specific child modules or platforms can also be obtained individually from the Maven Central Repository. We can also have everything downloaded and installed automatically with: Maven (inside the pom.xml file) <dependency> <groupId>org.bytedeco</groupId> <artifactId>javacv-platform</artifactId> <version>1.3.3</version> </dependency> Gradle (inside the build.gradle file) dependencies { compile group: 'org.bytedeco', name: 'javacv-platform', version: '1.3.3' } sbt (inside the build.sbt file) libraryDependencies += "org.bytedeco" % "javacv-platform" % "1.3.3" This downloads binaries for all platforms, but to get binaries for only one platform we can set the javacpp.platform system property (via the -D command line option) to something like android-arm, linux-x86_64, macosx-x86_64, windows-x86_64, etc. Please refer to the README.md file of the JavaCPP Presets for details. Another option available for Scala users is sbt-javacv. Required Software To use JavaCV, you will first need to download and install the following software: An implementation of Java SE 7 or newer: OpenJDK http://openjdk.java.net/install/ or Sun JDK http://www.oracle.com/technetwork/java/javase/downloads/ or IBM JDK http://www.ibm.com/developerworks/java/jdk/ Further, although not always required, some functionality of JavaCV also relies on: CL Eye Platform SDK (Windows only) http://codelaboratories.com/downloads/ Android SDK API 14 or newer http://developer.android.com/sdk/ JOCL and JOGL from JogAmp http://jogamp.org/ Finally, please make sure everything has the same bitness: 32-bit and 64-bit modules do not mix under any circumstances. Manual Installation Simply put all the desired JAR files (opencv*.jar, ffmpeg*.jar, etc.), in addition to javacpp.jar and javacv.jar, somewhere in your class path. Here are some more specific instructions for common cases: NetBeans (Java SE 7 or newer): In the Projects window, right-click the Libraries node of your project, and select "Add JAR/Folder...". Locate the JAR files, select them, and click OK. Eclipse (Java SE 7 or newer): Navigate to Project > Properties > Java Build Path > Libraries and click "Add External JARs...". Locate the JAR files, select them, and click OK. IntelliJ IDEA (Android 4.0 or newer): Follow the instructions on this page: http://developer.android.com/training/basics/firstapp/ Copy all the JAR files into the app/libs subdirectory. Navigate to File > Project Structure > app > Dependencies, click +, and select "2 File dependency". Select all the JAR files from the libs subdirectory. After that, the wrapper classes for OpenCV and FFmpeg, for example, can automatically access all of their C/C++ APIs: OpenCV documentation FFmpeg documentation Sample Usage The class definitions are basically ports to Java of the original header files in C/C++, and I deliberately decided to keep as much of the original syntax as possible. For example, here is a method that tries to load an image file, smooth it, and save it back to disk: import static org.bytedeco.javacpp.opencv_core.*; import static org.bytedeco.javacpp.opencv_imgproc.*; import static org.bytedeco.javacpp.opencv_imgcodecs.*; public class Smoother { public static void smooth(String filename) { IplImage image = cvLoadImage(filename); if (image != null) { cvSmooth(image, image); cvSaveImage(filename, image); cvReleaseImage(image); } } } JavaCV also comes with helper classes and methods on top of OpenCV and FFmpeg to facilitate their integration to the Java platform. Here is a small demo program demonstrating the most frequently useful parts: import java.io.File; import java.net.URL; import org.bytedeco.javacv.*; import org.bytedeco.javacpp.*; import org.bytedeco.javacpp.indexer.*; import static org.bytedeco.javacpp.opencv_core.*; import static org.bytedeco.javacpp.opencv_imgproc.*; import static org.bytedeco.javacpp.opencv_calib3d.*; import static org.bytedeco.javacpp.opencv_objdetect.*; public class Demo { public static void main(String[] args) throws Exception { String classifierName = null; if (args.length > 0) { classifierName = args[0]; } else { URL url = new URL("https://raw.github.com/Itseez/opencv/2.4.0/data/haarcascades/haarcascade_frontalface_alt.xml"); File file = Loader.extractResource(url, null, "classifier", ".xml"); file.deleteOnExit(); classifierName = file.getAbsolutePath(); } // Preload the opencv_objdetect module to work around a known bug. Loader.load(opencv_objdetect.class); // We can "cast" Pointer objects by instantiating a new object of the desired class. CvHaarClassifierCascade classifier = new CvHaarClassifierCascade(cvLoad(classifierName)); if (classifier.isNull()) { System.err.println("Error loading classifier file \"" + classifierName + "\"."); System.exit(1); } // The available FrameGrabber classes include OpenCVFrameGrabber (opencv_videoio), // DC1394FrameGrabber, FlyCaptureFrameGrabber, OpenKinectFrameGrabber, OpenKinect2FrameGrabber, // RealSenseFrameGrabber, PS3EyeFrameGrabber, VideoInputFrameGrabber, and FFmpegFrameGrabber. FrameGrabber grabber = FrameGrabber.createDefault(0); grabber.start(); // CanvasFrame, FrameGrabber, and FrameRecorder use Frame objects to communicate image data. // We need a FrameConverter to interface with other APIs (Android, Java 2D, or OpenCV). OpenCVFrameConverter.ToIplImage converter = new OpenCVFrameConverter.ToIplImage(); // FAQ about IplImage and Mat objects from OpenCV: // - For custom raw processing of data, createBuffer() returns an NIO direct // buffer wrapped around the memory pointed by imageData, and under Android we can // also use that Buffer with Bitmap.copyPixelsFromBuffer() and copyPixelsToBuffer(). // - To get a BufferedImage from an IplImage, or vice versa, we can chain calls to // Java2DFrameConverter and OpenCVFrameConverter, one after the other. // - Java2DFrameConverter also has static copy() methods that we can use to transfer // data more directly between BufferedImage and IplImage or Mat via Frame objects. IplImage grabbedImage = converter.convert(grabber.grab()); int width = grabbedImage.width(); int height = grabbedImage.height(); IplImage grayImage = IplImage.create(width, height, IPL_DEPTH_8U, 1); IplImage rotatedImage = grabbedImage.clone(); // Objects allocated with a create*() or clone() factory method are automatically released // by the garbage collector, but may still be explicitly released by calling release(). // You shall NOT call cvReleaseImage(), cvReleaseMemStorage(), etc. on objects allocated this way. CvMemStorage storage = CvMemStorage.create(); // The OpenCVFrameRecorder class simply uses the CvVideoWriter of opencv_videoio, // but FFmpegFrameRecorder also exists as a more versatile alternative. FrameRecorder recorder = FrameRecorder.createDefault("output.avi", width, height); recorder.start(); // CanvasFrame is a JFrame containing a Canvas component, which is hardware accelerated. // It can also switch into full-screen mode when called with a screenNumber. // We should also specify the relative monitor/camera response for proper gamma correction. CanvasFrame frame = new CanvasFrame("Some Title", CanvasFrame.getDefaultGamma()/grabber.getGamma()); // Let's create some random 3D rotation... CvMat randomR = CvMat.create(3, 3), randomAxis = CvMat.create(3, 1); // We can easily and efficiently access the elements of matrices and images // through an Indexer object with the set of get() and put() methods. DoubleIndexer Ridx = randomR.createIndexer(), axisIdx = randomAxis.createIndexer(); axisIdx.put(0, (Math.random()-0.5)/4, (Math.random()-0.5)/4, (Math.random()-0.5)/4); cvRodrigues2(randomAxis, randomR, null); double f = (width + height)/2.0; Ridx.put(0, 2, Ridx.get(0, 2)*f); Ridx.put(1, 2, Ridx.get(1, 2)*f); Ridx.put(2, 0, Ridx.get(2, 0)/f); Ridx.put(2, 1, Ridx.get(2, 1)/f); System.out.println(Ridx); // We can allocate native arrays using constructors taking an integer as argument. CvPoint hatPoints = new CvPoint(3); while (frame.isVisible() && (grabbedImage = converter.convert(grabber.grab())) != null) { cvClearMemStorage(storage); // Let's try to detect some faces! but we need a grayscale image... cvCvtColor(grabbedImage, grayImage, CV_BGR2GRAY); CvSeq faces = cvHaarDetectObjects(grayImage, classifier, storage, 1.1, 3, CV_HAAR_FIND_BIGGEST_OBJECT | CV_HAAR_DO_ROUGH_SEARCH); int total = faces.total(); for (int i = 0; i < total; i++) { CvRect r = new CvRect(cvGetSeqElem(faces, i)); int x = r.x(), y = r.y(), w = r.width(), h = r.height(); cvRectangle(grabbedImage, cvPoint(x, y), cvPoint(x+w, y+h), CvScalar.RED, 1, CV_AA, 0); // To access or pass as argument the elements of a native array, call position() before. hatPoints.position(0).x(x-w/10) .y(y-h/10); hatPoints.position(1).x(x+w*11/10).y(y-h/10); hatPoints.position(2).x(x+w/2) .y(y-h/2); cvFillConvexPoly(grabbedImage, hatPoints.position(0), 3, CvScalar.GREEN, CV_AA, 0); } // Let's find some contours! but first some thresholding... cvThreshold(grayImage, grayImage, 64, 255, CV_THRESH_BINARY); // To check if an output argument is null we may call either isNull() or equals(null). CvSeq contour = new CvSeq(null); cvFindContours(grayImage, storage, contour, Loader.sizeof(CvContour.class), CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE); while (contour != null && !contour.isNull()) { if (contour.elem_size() > 0) { CvSeq points = cvApproxPoly(contour, Loader.sizeof(CvContour.class), storage, CV_POLY_APPROX_DP, cvContourPerimeter(contour)*0.02, 0); cvDrawContours(grabbedImage, points, CvScalar.BLUE, CvScalar.BLUE, -1, 1, CV_AA); } contour = contour.h_next(); } cvWarpPerspective(grabbedImage, rotatedImage, randomR); Frame rotatedFrame = converter.convert(rotatedImage); frame.showImage(rotatedFrame); recorder.record(rotatedFrame); } frame.dispose(); recorder.stop(); grabber.stop(); } } Furthermore, after creating a pom.xml file with the following content: <project> <modelVersion>4.0.0</modelVersion> <groupId>org.bytedeco.javacv</groupId> <artifactId>demo</artifactId> <version>1.3.3</version> <dependencies> <dependency> <groupId>org.bytedeco</groupId> <artifactId>javacv-platform</artifactId> <version>1.3.3</version> </dependency> </dependencies> </project> And by placing the source code above in src/main/java/Demo.java, we can use the following command to have everything first installed automatically and then executed by Maven: $ mvn compile exec:java -Dexec.mainClass=Demo Build Instructions If the binary files available above are not enough for your needs, you might need to rebuild them from the source code. To this end, the project files were created for: Maven 3.x http://maven.apache.org/download.html JavaCPP 1.3 https://github.com/bytedeco/javacpp JavaCPP Presets 1.3 https://github.com/bytedeco/javacpp-presets Once installed, simply call the usual mvn install command for JavaCPP, its Presets, and JavaCV. By default, no other dependencies than a C++ compiler for JavaCPP are required. Please refer to the comments inside the pom.xml files for further details. Project lead: Samuel Audet [samuel.audet at gmail.com](mailto:samuel.audet at gmail.com) Developer site: https://github.com/bytedeco/javacv Discussion group: http://groups.google.com/group/javacv
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值