基于MATLAB实现(训练)GAN(附原理和代码)

本文详细介绍了如何利用MATLAB训练生成对抗网络(GAN)来生成图像。GAN由生成器和判别器两部分组成,通过互相博弈的方式进行训练。生成器负责生成与真实数据相似的图像,而判别器则试图区分真实图像与生成图像。训练过程包括获取训练数据、构建网络模型、定义损失函数及训练过程。提供的MATLAB代码链接可帮助读者实际操作并生成新的图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

此示例说明如何训练生成对抗网络(Generative Adversarial Network)来生成图像;
一:原理
GAN:一种深度学习网络,能够生成与真实输入数据具有相似特征的数据;
GAN由两个一起训练的网络组成–生成器(Generator)和判别器(Discriminator):
GAN结构图

  1. 生成器(Generator):给定随机值(潜在输入)向量(通常是满足某一特征分布的任意向量,即GAN结构图中的Noise), Generator可以生成(输出)与训练样本具有相同数据特征(结构/分布)的数据(Generated Images);
  2. 判别器(Discriminator):给定包含训练数据(Real Images)和Generator生成的生成数据(Generated Images),.Discriminator尽量将训练数据和生成数据分别判定为"真实值:“和"生成值”,即输出Predicted Labels;

训练GAN即同时训练Generator和Dsicrimiator,分别最大化两个网络的性能:

  1. 训练Generator生成"欺骗"Discriminator的数据(Generated Images),即判别器对生生成数据判别为"真实(1)“;
    2)训练Discriminator"区分"真实数据"和"生成数据”,即判定真实数据为"1",生成数据为"0";
    优化生成器的性能,即给定生成的数据,最大化判别器的损失(最小化生成器的损失),生成器的优化目标是生成判别器判别为真(1)的数据;
    优化判别器的性能,即给定真实数据和生成数据,最小化判别器的损失,判别器的优化目标是区分生成数据和真实数据,判别真实数据为1,判定生成数据为0;
    理想情况下,训练好的生成器能够生成与真实样本同分布的数据,训练好的判别器能够学习到训练数据特有的强特征表示;
    训练GAN的过程如下:
    GAN训练过程
    训练数据的获取, 生成器和判别器网络的搭建, 模型梯度,损失函数,以及生成器和判别器分数的定义, GAN模型的训练过程, 以及如何基于训练好的生成器生成新的图像, 都基于以下的MATLAB代码:
    https://ww2.mathworks.cn/help/deeplearning/ug/train-generative-adversarial-network.html
    (MATLAB-R2020b以后的版本可以训练GAN)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值