离散数学:1.代数系统预备

12 代数系统预备知识

12.1 代数系统

运算:设集合 S ≠ ∅ S≠\varnothing S=, f f f为一个 S → S S\rightarrow S SS的映射,即 ∀ a ∈ S \forall a\in S aS, ∃ \exists 唯一的 b ∈ S b\in S bS,使 b b b a a a f f f下的象,记为 f ( a ) = b f(a)=b f(a)=b,称 a a a b b b的原象。可知映射 f f f又称为函数,在代数系统中将一元函数视为一个一元运算,二元函数视为二元运算,以此类推。

代数系统:一个非空集合 S S S,与一个或若干个定义在 S S S上的运算 Q 1 , ⋯   , Q k , k ≥ 1 Q_1,\cdots ,Q_k,k\geq1 Q1,,Qk,k1,就构成一个代数系统,表示为 [ S ; Q 1 , ⋯   , Q k ] [S;Q_1,\cdots,Q_k] [S;Q1,,Qk]

载集:在代数系统 [ S ; Q 1 , ⋯   , Q k ] [S;Q_1,\cdots,Q_k] [S;Q1,,Qk]中称集合 S S S为该系统的载集合

注意:定义在 S S S上的一个运算,其值域必然为 S S S S S S的子集,否则有关运算就不能视为定义在 S S S上的运算(封闭性)

以代数系统 [ S ; ∗ ] [S;*] [S;]为例,介绍二元运算 ∗ * 的性质:

  1. 封闭性 ∀ a , b ∈ S , a ∗ b ∈ S \forall a,b \in S,a*b\in S a,bS,abS,则称运算 ∗ * 关于集合 S S S封闭

  2. 结合律 ∀ a , b ∈ S \forall a,b\in S a,bS a ∗ ( b ∗ c ) = ( a ∗ b ) ∗ c a*(b*c)=(a*b)*c a(bc)=(ab)c

  3. 交换律 ∀ a , b ∈ S \forall a,b \in S a,bS a ∗ b = b ∗ a a*b=b*a ab=ba

  4. 单位元 (幺元):若 S S S中存在元素 e ′ e' e,使得 ∀ a ∈ S , e ′ ∗ a = a \forall a \in S,e'*a=a aS,ea=a,称 e ′ e' e ∗ * S S S中的左单位元,类似的,给出右单位元的定义,若既是左单位元又是右单位元,则为单位元。易证单位元是唯一的。

  5. 逆元:对有单位元 e e e的代数系统而言,如果 ∀ a ∈ S , ∃ b ∈ S \forall a\in S,\exist b \in S aS,bS,使 a ∗ b = e a*b=e ab=e,则称 b b b a a a的右逆元,类似的给出左逆元的定义,若既是左逆元又是右逆元,则为逆元,表示为 a − 1 a^{-1} a1

    逆元的性质:当 ∗ * 满足结合律,且 a a a有逆元时, a a a的逆元时唯一的。

  6. 零元:设有 θ ∈ S \theta \in S θS,使得 ∀ a ∈ S \forall a \in S aS,有 θ ∗ a = a ∗ θ = θ \theta*a=a*\theta=\theta θa=aθ=θ,则称 θ \theta θ ∗ * S S S中的零元。类似的可定义出左零元和右零元。

  7. 分配律:设代数系统 [ S ; ∗ , ∘ ] [S;*,\circ] [S;,],其中 ∗ , ∘ *,\circ ,均为定义在 S S S上的二元运算,当对任意 a , b , c ∈ S a,b,c\in S a,b,cS
    a ∘ ( b ∗ c ) = ( a ∘ b ) ∗ ( a ∘ c ) a\circ (b*c) = (a\circ b)*(a\circ c) a(bc)=(ab)(ac)
    则称 ∘ \circ 关于 ∗ * 满足左分配律,同理,可给出右分配律的定义。当 ∘ \circ 关于 ∗ * 同时满足左、右分配律时,称其满足分配律。

几个常用的集合记号:

Z Z Z:整数集合

Q Q Q:有理数集合

R R R:实数集合

C C C:复数集合

N N N:自然数集合

M n , m ( R ) M_{n,m}(R) Mnm(R) n × m n\times m n×m阶实数矩阵,可将 R R R换成其他的

Z n Z_n Zn:整数关于自然数 n > 1 n\gt1 n>1的同余类(等价类)为元素的集合,即 Z n = { [ 0 ] , [ 1 ] , ⋯   , [ n − 1 ] } Z_n=\{[0],[1],\cdots,[n-1]\} Zn={[0],[1],,[n1]}

12.2 同态、同构与商系统

同态映射:设有两个代数系统 [ S ; ∗ ] , [ T ; ∘ ] [S;*],[T;\circ] [S;],[T;],其中 ∗ , ∘ *,\circ ,均为二元运算。如果存在 φ : S → T \varphi:S\rightarrow T φ:ST,使得 ∀ a , b ∈ S \forall a,b \in S a,bS,有:
φ ( a ∗ b ) = φ ( a ) ∘ φ ( b ) \varphi(a*b)=\varphi(a)\circ \varphi(b) φ(ab)=φ(a)φ(b)
其中, φ ( a ) , φ ( b ) \varphi(a),\varphi(b) φ(a),φ(b) φ ( a ∗ b ) \varphi(a*b) φ(ab)均为 T T T中的元素。此时称 φ \varphi φ为代数系统 [ S , ∗ ] [S,*] [S,]到代数系统 [ T ; ∘ ] [T;\circ] [T;]的一个同态映射

同态:当同态映射 φ \varphi φ,满足 φ ( S ) = T \varphi(S)=T φ(S)=T(满的)时, φ \varphi φ为满同态映射,称 [ S ; ∗ ] [S;*] [S;] [ T ; ∘ ] [T;\circ] [T;]两个系统同态。在这种情况下。同态映射把 S S S系统的许多性质带到了 T T T。例如,当 ∗ * 可交换, ∘ \circ 必可交换; ∗ * 有单位元 e ∈ S e\in S eS, ∘ \circ 也有单位元 e ′ ∈ T e'\in T eT,q且 φ ( e ) = e ′ \varphi(e)=e' φ(e)=e

同构:同态+同态映射 φ \varphi φ是一一对应的

相容等价关系:对 S S S中的任意元素 a , b , c , d a,b,c,d a,b,c,d,当 a ∼ b , c ∼ d a\sim b,c\sim d ab,cd时,有 a ∗ b ∼ b ∗ d a*b \sim b*d abbd,就称等价关系 ∼ \sim 与运算 ∗ * 是相容的,即 ∼ \sim 是代数系统 [ S ; ∗ ] [S;*] [S;]的相容等价关系。

商系统(商结构):以相容等价关系 ∼ \sim S S S作等价类划分,以 [ a ] [a] [a]表示与 a a a等价的元素全体,则 S ~ \tilde{S} S~即为由等价类元素构成的集合。在 S ~ \tilde{S} S~上定义一个新的二元运算 Δ \Delta Δ如下: ∀ [ a ] , [ b ] ∈ S ~ , [ a ] Δ [ b ] = [ a ∗ b ] \forall [a],[b]\in \tilde{S},[a]\Delta[b]=[a*b] [a],[b]S~,[a]Δ[b]=[ab]。称 [ S ~ ; Δ ] [\tilde S;\Delta] [S~;Δ]为原系统 [ S ; ∗ ] [S;*] [S;]的商结构或商系统。由于 ∼ \sim 关于 ∗ * 的相容性,保证了运算 Δ \Delta Δ的结果与等价类代表元选取无关。

12.3 代数系统 [ Z ; + ; ⋅ ] [Z;+;\cdot] [Z;+;]

最大公因子: c = G C D ( a , b ) c=GCD(a,b) c=GCD(a,b),或 c = ( a , b ) c=(a,b) c=(a,b)

最小公倍数: s = L C M ( a , b ) s=LCM(a,b) s=LCM(a,b),或 s = [ a , b ] s=[a,b] s=[a,b]

辗转相除法和广义欧几里得除法。

唯一析因定理:任意一个正整数 n n n,可被分解为有限个素数的乘积,即
n = p 1 r 1 p 2 r 2 ⋯ p k r k n=p_1^{r1}p_2^{r2}\cdots p_k^{r_k} n=p1r1p2r2pkrk
其中 r i ≥ 1 , i = 1 , ⋯   , k r_i\ge 1,i=1,\cdots,k ri1,i=1,,k,而且这种分解式是唯一的,也适用于负整数。

根据上述性质,在不考虑正、负号时(即 ± \pm ±p都是素数),对整数集 Z \Z Z可作如下划分: { 0 } , { ± 1 } , { 素数全体 } , { 合数全体 } \{0\},\{\pm1\},\{素数全体\},\{合数全体\} {0},{±1},{素数全体},{合数全体}

可能用到的素数性质:

  1. p p p为素数, p ∣ a b p|ab pab p ∣ a p|a pa p ∣ b p|b pb
  2. p p p为素数, k ∈ Z , k ∣ p k \in Z,k|p kZkp k = ± 1 k=\pm1 k=±1 k = ± p k=\pm p k=±p。注意是 ± \pm ±
  • 11
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值